
The surface temperature of a planet

Note that this derivation is for a rapidly rotating planet, in that the spin is fast enough that all of
the planet recieves incomming radiation on the same timescale (or less) than it radiates it.

The power W (J s−1) radiated per unit area by a blackbody is

W = σT 4

with T in K, and σ is the Stefan-Boltzmann constant (5.67 × 10−8 W m−2 K−4). Therefore the energy
E radiated per unit time from a spherical blackbody or radius r is

Erad = 4πr2W

and the temperature of that blackbody is

T =

(

Erad

4πσr2

)1/4

The energy from a star of luminosity L at a distance d incident on a planet of radius r (the ‘insolation’)
is

Einsol = L
πr2

4πd2

However, not all of the stellar energy that is incident with a planet reaches the planet’s surface.
A fraction α (also often called A) of the energy is reflected directly back into space (mainly by clouds

or ice). The fraction of the incident energy reflected is the albedo of the planet (formally their are two
types of albedo, but we will ignore this technical point). Thee albedo of Earth is ∼ 0.3, and of Venus
∼ 0.7 (the large albedo of Venus is due to its complete cloud cover).

In addition, a fraction β of energy can be absorbed by the atmosphere (especially in the UV and IR)
never reaching the ground (this is the reason for the temperature inversion at ∼ 10 km at the top of the
troposphere and the bottom of the stratosphere). We will ignore this factor, but see
http://www.dangermouse.net/gurps/science/temps.html for a full derivation with this factor included if
you really want to.

Thus the total energy that reaches the surface of a planet is

Esurf = (1 − α)L
πr2

4πd2

A planet can be assumed to be in energy balance - that is the amount of energy radiated by the planet
equals the amount the planet absorbs, so that

Esurf = Erad

If the planet is rapidly spinning, then we can assume that the whole surface of the planet is heated
and re-radiates as a black body, so we can solve for the surface temperature:

Tsurf =

(

(1 − α)L

16πσd2

)1/4

Note that this is independant of the planet’s radius.
Putting-in values for the Earth and Sun where L⊙ = 3.83 × 1026 W, d = 1.5 × 1011 m and α = 0.31

gives a Tsurf ∼ 245 K (note that if we’d done this including the effects of the atmospheric absorption of
incomming radiation we would have got ∼ 250 K).

But the average surface temperature of the Earth is ∼ 286 K (13 C). This is because we have ignored
the greenhouse effect - the trapping of heat radiated by the surface by the atmosphere. For the Earth
the greenhouse effect increses the surface temperature by 35 – 40 K!
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The same calculation for Venus gives a surface temperature of ∼ 256 K - only slightly warmer than
the Earth. However, the surface temperature of Venus is actually ∼ 735 K. A huge 490 K of greenhouse
warming!

Note that these are average surface temperatures: latitude, geography, seasons, local albedo, local
cloud cover etc. cause variations in the earth’s surface temperature of ±30 –40 K (compare Northern
Canada with Arabia).

Another minor factor is heat released from inside a planet. The larger terrestrial planets have molten
cores heated by radioactive decay. Heat is released in small amounts across the planet, but especially
close to volcanoes, however this is normally a negligable amount. In extreme conditions - such as Io
(and to a lesser extent Europa) - tidal forces from a massive nearby body can heat the interior of a
planet/moon.

Retaining an atmosphere

The rms velocity of a gas particle of mass m at a temperature T is

vrms =

√

3kBT

m

where kB is Boltzmann’s constant (1.38 × 10−23 m2 kg s−2 K−1). The escape velocity from a planet of
radius r and mass M is

vesc =

√

2GM

r

where G is Newton’s constant of gravitation (6.67 × 10−11 m3 kg−1 s−2).
In order to retain an atmosphere for a significant time we require vrms < vesc/6.
The factor of ∼ 6 comes from a Maxwellian velocity distribution, one particle in 1016 has more than

∼ 6 times the rms velocity, and as high velocity molecules are lost, the Maxwellian re-establishes itself
leading to more particles above the escape velocity.

For the Earth vesc = 11.2 km s−1. At a temperature of 286 K vrms for H2 is 1.9 km s−1, whilst for O2

it is 0.5 km s−1. Thus for hydrogen the high-velocity tail of the Maxwellian that is > vesc is sufficient
for the loss of molecules into space.
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