1 MT1 Homework Problem Solutions: 6

- 1) Simplify the following, expressing the complex numbers in the form a+bi:
 - i) (5+22i)-(-3-1i)=8+23i,

ii)
$$(5+22i) \times (-3-1i) = 7-71i$$
,

iii)
$$\frac{5+22i}{-3-1i} = -3.7 - 6.1i$$
,

iv)
$$e^{i\pi/2} = i$$
.

2) Simplify the following, expressing the complex numbers in the form $re^{i\theta}$:

i)
$$(1+2i)-(-2+1i)=\sqrt{10}e^{i\theta}$$
, where $\theta=\arctan(1/3)=18.4^{\circ}$.

$$[1 \text{ mark}(s)]$$

ii)
$$(1+2i) \times (-2+1i) = 5e^{i\theta}$$
, where $\theta = \arctan(3/4) = 216.86^{\circ}$.

$$[1 \text{ mark}(s)]$$

iii)
$$\frac{1+2i}{-2+1i} = -i = e^{2\pi i/3}$$
,

iv)
$$5\cos(2\pi) + 5i\sin(2\pi) = 5e^{2\pi i}$$
.

3)

$$z = \frac{1}{11i} + \frac{1}{2 - 1i},$$

$$= \frac{-i}{11} + \frac{2 + 1i}{5},$$

$$= \frac{2}{5} + \frac{6i}{55}.$$

ii) For
$$z = 1 + 1i$$
, determine z^3 , \sqrt{z} , and zz^*

$$z^3 = (1+1i)(1+1i)(1+1i) = \left[\sqrt{2}e^{i\pi/4}\right]^3 = \sqrt{8}e^{3i\pi/4} = 2i - 2.$$

$$\sqrt{z} = \sqrt[4]{2}e^{i\pi/8}, \sqrt[4]{2}e^{9i\pi/8},$$

$$zz^* = (1+1i)(1-1i) = 2.$$

[3 mark(s)]

iii) Find expressions for $\cos \theta$ and $\sin \theta$ in terms of $e^{i\theta}$.

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2},$$
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i},$$

[2 mark(s)]

4) Write the following complex number in the form a + bi:

$$z = \frac{(M_{11} - M_{22}) - (i/2)(\Gamma_{11} - \Gamma_{22})}{\Delta m - (i/2)\Delta\Gamma},$$

$$= \frac{(M_{11} - M_{22}) - (i/2)(\Gamma_{11} - \Gamma_{22})}{\Delta m - (i/2)\Delta\Gamma} \times \frac{\Delta m + (i/2)\Delta\Gamma}{\Delta m + (i/2)\Delta\Gamma},$$

$$= \frac{4}{4\Delta m^2 + \Delta\Gamma^2} \left[(M_{11} - M_{22})\Delta m + \frac{\Delta\Gamma}{4}(\Gamma_{11} - \Gamma_{22}) + i\left(\frac{\Delta\Gamma}{2}(M_{11} - M_{22}) - \frac{\Delta m}{2}(\Gamma_{11} - \Gamma_{22})\right) \right].$$

where M_{ij} , Γ_{ij} , Δm , and $\Delta \Gamma$ are constants, and i, j = 1, 2.

[3 mark(s)]

5) Find the square roots of z=3 and draw these on an Argand diagram (Argand diagram shown in Fig. ??)

$$z_1 = \sqrt{3}$$

$$z_2 = \sqrt{3}e^{i\pi}$$

[3 mark(s)]

1 mark for each of the roots, and the argand diagram

Figure 1: Square roots of z = 3.

6) Find the fourth roots of z=1 and draw these on an Argand diagram (Argand diagram shown in Fig. ??).

$$z_{1} = 1$$
 $z_{2} = e^{i\pi/2}$
 $z_{3} = e^{i\pi}$
 $z_{4} = e^{3i\pi/4}$
(1)

[5 mark(s)]

1 mark for each of the roots, and the argand diagram

Figure 2: Fourth roots of z = 1.

6) Determine the Maclaurin series expansion for $f(x) = \cosh(x)$.

$$f_0 = 1
 f'_0 = 0
 f''_0 = 1
 f''''_0 = 0
 f''''_0 = 0$$

So the Maclaurin series expansion for f(x) is

$$f(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$

[3 mark(s)]