1B45 Mathematical Methods Problem Class 2 2005/2006
Week starting Monday 31st. October

1. Differentiation using the product and/or the chain rule.
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2.Integration by inspection or by the substitutions given.

(Note the constant of integration is not included in what follows.)
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Repeat the determination of the integral by making the substitution x = atanf .
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You may also use any standard result already obtained in this question.

()

by making the substitution u = e”.
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Using integration by parts evaluate the following definite integrals
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and show that your results agree with the general formula
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Obtain the same result by differentiating both sides of the equation at the start
of this question with respect to a.

4. Ice of thickness x metres and density p has formed on the surface of a lake.
The temperature of the lake’s surface at x = 0 , 7} is lower than that of the water
just below the ice, which is at 0°C. For each kilogram of ice that forms L joules of
latent heat () is released. The rate of heat flow d@/dt is given by
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where A is the area through which the heat flows, x is the coefficient of thermal
conductivity of ice and Z—f is the temperature gradient in the ice, which you can
assume to be uniform.
Obtain an equation for the time ¢, at which a thickness of ice z has formed in
terms of z, p, k, L and T.



