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0 Introduction

0.1 Schedule

This is a copy from the booklet of schedules.1 Schedules are minimal for lecturing and maximal for
examining; that is to say, all the material in the schedules will be lectured and only material in the
schedules will be examined. The numbers in square brackets at the end of paragraphs of the schedules
indicate roughly the number of lectures that will be devoted to the material in the paragraph.

Mathematical Methods I 24 lectures, Michaelmas term

This course comprises Mathematical Methods I, Mathematical Methods II and Mathematical
Methods III and six Computer Practicals. The material in Course A from Part IA will be
assumed in the lectures for this course.2 Topics marked with asterisks should be lectured, but
questions will not be set on them in examinations.

The material in the course will be as well illustrated as time allows with examples and
applications of Mathematical Methods to the Physical Sciences.3

Vector calculus
Reminder of grad, div, curl, ∇2. Divergence theorem and Stokes’ theorem. Vector differential
operators in orthogonal curvilinear coordinates, e.g. cylindrical and spherical polar coordi-
nates. [4]

Partial differential equations
Linear second-order partial differential equations; physical examples of occurrence, the meth-
od of separation of variables (Cartesian coordinates only). [3]

Fourier transform
Fourier transforms; relation to Fourier series, simple properties and examples, delta function,
convolution theorem and Parseval’s theorem treated heuristically, application to diffusion
equation. [3]

Matrices
N–dimensional vector spaces, matrices, scalar product, transformation of basis vectors. Quad-
ratic and Hermitian forms, quadric surfaces. Eigenvalues and eigenvectors of a matrix; de-
generate case, stationary property of eigenvalues. Orthogonal and unitary transformations.

[5]

Elementary Analysis
Idea of convergence and limits. Convergence of series; comparison and ratio tests. Power series
of a complex variable; circle of convergence. O notation. The integral as a sum. Differentiation
of an integral with respect to its limits. Schwarz’s inequality. [2]

Ordinary differential equations
Homogeneous equations; solution by series (without full discussion of logarithmic singulari-
ties), exemplified by Legendre’s equation. Inhomogeneous equations; solution by variation of
parameters, introduction to Green’s function.

Sturm-Liouville theory; self-adjoint operators, eigenfunctions and eigenvalues, reality of eigen-
values and orthogonality of eigenfunctions. Eigenfunction expansions and determination of
coefficients. Legendre polynomials; orthogonality. [7]

1 See http://www.maths.cam.ac.uk/undergrad/NST/sched/.
2 However, if you took course A rather than B, then you might like to recall the following extract from the schedules:

Students are . . . advised that if they have taken course A in Part IA, they should consult their Director of Studies about
suitable reading during the Long Vacation before embarking upon Part IB.

3 Time is always short.

Natural Sciences Tripos: IB Mathematical Methods I i c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2004



0.2 Books

An extract from the schedules.

There are very many books which cover the sort of mathematics required by Natural Sci-
entists. The following should be helpful as general reference; further advice will be given by
Lecturers. Books which can reasonably be used as principal texts for the course are marked
with a dagger.

† G Arfken & H Weber Mathematical Methods for Physicists, 5th edition. Elsevier/Academic
Press, 2001 (£46.95 hardback).

† J W Dettman Mathematical Methods in Physics and Engineering. Dover, 1988 (£13.60 pa-
perback).

H F Jones Groups, Representation and Physics, 2nd edition. Institute of Physics Publishing,
1998 (£24.99 paperback)

E Kreyszig Advanced Engineering Mathematics, 8th edition. Wiley, 1999 (£30.95 paperback,
£92.50 hardback)

J W Leech & D J Newman How to Use Groups. Chapman & Hall, 1993 (out of print)
† J Mathews & R L Walker Mathematical Methods of Physics, 2nd edition. Pearson/Benjamin

Cummings, 1970 (£68.99 hardback).
† K F Riley, M P Hobson & S J Bence Mathematical Methods for Physics and Engineering.

2nd ed., Cambridge University Press, 2002 (£29.95 paperback, £75.00 hardback).

R N Snieder A guided tour of mathematical methods for the physical sciences. Cambridge
University Press, 2001 (£21.95 paperback)

There is likely to be an uncanny resemblance between my notes and Riley, Hobson & Bence. This is
because we both used the same source, i.e. previous Cambridge lecture notes, and not because I have
just copied out their textbook (although it is true that I have tried to align my notation with theirs)!4

Having said that, it really is a good book. A must buy.

Of the other books I like Mathews & Walker, but it might be a little mathematical for some. Also, the
first time I gave a ‘service’ mathematics course (over 15 years ago to aeronautics students at Imperial),
my notes bore an uncanny resemblance to Kreyszig . . . and that was not because we were using a common
source!

0.3 Lectures

• Lectures will start at 11:05 promptly with a summary of the last lecture. Please be on time since
it is distracting to have people walking in late.

• I will endeavour to have a 2 minute break in the middle of the lecture for a rest and/or jokes
and/or politics and/or paper aeroplanes5; students seem to find that the break makes it easier to
concentrate throughout the lecture.6

• I will aim to finish by 11:55, but am not going to stop dead in the middle of a long proof/explanation.

• I will stay around for a few minutes at the front after lectures in order to answer questions.

• By all means chat to each other quietly if I am unclear, but please do not discuss, say, last night’s
football results, or who did (or did not) get drunk and/or laid. Such chatting is a distraction.

4 In a previous year a student hoped that Riley et al. were getting royalties from my lecture notes; my view is that I
hope that my lecturers from 30 years ago are getting royalties from Riley et al.!

5 If you throw paper aeroplanes please pick them up. I will pick up the first one to stay in the air for 5 seconds.
6 Having said that, research suggests that within the first 20 minutes I will, at some point, have lost the attention of all

of you.
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• I want you to learn. I will do my best to be clear but you must read through and understand your
notes before the next lecture . . . otherwise you will get hopelessly lost. An understanding of your
notes will not diffuse into you just because you have carried your notes around for a week . . . or
put them under your pillow.

• I welcome constructive heckling. If I am inaudible, illegible, unclear or just plain wrong then please
shout out.

• I aim to avoid the words trivial, easy, obvious and yes7. Let me know if I fail. I will occasionally
use straightforward or similarly to last time; if it is not, email me (S.J.Cowley@damtp.cam.ac.uk)
or catch me at the end of the next lecture.

• Sometimes I may confuse both you and myself, and may not be able to extract myself in the middle
of a lecture. Under such circumstances I will have to plough on as a result of time constraints;
however I will clear up any problems at the beginning of the next lecture.

• This is a service course. Hence you will not get pure mathematical levels of rigour; having said that
all the outline/sketch ‘proofs’ could in principle be tightened up given sufficient time.

• In Part IA all NST students were required to study mathematics. Consequently the lecturers
adapted their presentation to account for the presence of students who might like to have been
somewhere else, e.g. there were lots of how to do it ‘recipes’ and not much theory. This is an optional
course, and as a result there will more theory than last year (although less than in the comparable
mathematics courses). If you are really to use a method, or extend it as might be necessary in
research, you need to understand why a method works, as well as how to apply it. FWIW the NST
mathematics schedules are decided by scientists in conjunction with mathematicians.

• If anyone is colour blind please come and tell me which colour pens you cannot read.

0.4 Printed Notes

• Printed notes will be handed out for the course . . . so that you can listen to me rather than having
to scribble things down. If it is not in the printed notes or on the example sheets it should not be
in the exam.

• Any notes will only be available in lectures and only once for each set of notes.

• I do not keep back-copies (otherwise my office would be an even worse mess) . . . from which you
may conclude that I will not have copies of last time’s notes (so do not ask).

• There will only be approximately as many copies of the notes as there were students at the previous
lecture. We are going to fell a forest as it is, and I have no desire to be even more environmentally
unsound.

• Please do not take copies for your absent friends unless they are ill.

• The notes are deliberately not available on the WWW; they are an adjunct to lectures and are not
meant to be used independently.

• If you do not want to attend lectures then use one of the excellent textbooks, e.g. Riley, Hobson &
Bence.

• With one or two exceptions figures/diagrams are deliberately omitted from the notes. I was taught
to do this at my teaching course on How To Lecture . . . the aim being that it might help you to
stay awake if you have to write something down from time to time.

• There are a number of unlectured worked examples in the notes. In the past I have been tempted to
not include these because I was worried that students would be unhappy with material in the notes
that was not lectured. However, a vote in an earlier year was overwhelming in favour of including
unlectured worked examples.

• Please email me corrections to the notes and example sheets (S.J.Cowley@damtp.cam.ac.uk).

7 But I will fail miserably in the case of yes.
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0.5 Example Sheets

• There will be five example sheets. They will be available on the WWW at about the same time as
I hand them out (see http://damtp.cam.ac.uk/user/examples/).

• You should be able to do the revision example sheet, i.e. example sheet 0, immediately (although
you might like to wait until the end of lecture 2 for a couple of the questions).

• You should be able to do example sheets 1/2/3/4 after lectures 6/12/18/24 respectively. Please
bear this in mind when arranging supervisions.

0.6 Acknowledgements.

The following notes were adapted from those of Paul Townsend, Stuart Dalziel, Mike Proctor and Paul
Metcalfe.

0.7 Revision.

You should check that you recall the following.

The Greek alphabet.

A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ε epsilon
Z ζ zeta
H η eta
Θ θ theta
I ι iota
K κ kappa
Λ λ lambda
M µ mu
N ν nu
Ξ ξ xi
O o omicron
Π π pi
P ρ rho
Σ σ sigma
T τ tau
Υ υ upsilon
Φ φ phi
X χ chi
Ψ ψ psi
Ω ω omega

There are also typographic variations on epsilon (i.e. ε), phi (i.e. ϕ), and rho (i.e. %).

The first fundamental theorem of calculus. The first fundamental theorem of calculus states that
the derivative of the integral of f is f , i.e. if f is suitably ‘nice’ (e.g. f is continuous) then

Key
Result

d
dx

(∫ x

x1

f(t) dt
)

= f(x) . (0.1)
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The second fundamental theorem of calculus. The second fundamental theorem of calculus states
that the integral of the derivative of f is f , e.g. if f is differentiable then

Key
Result

∫ x2

x1

df
dx

dx = f(x2)− f(x1) . (0.2)

The Gaussian. The function

f(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
(0.3)

is called a Gaussian of width σ; in context of probability theory σ is the standard deviation. The
area under this curve is unity, i.e.

Key
Result

1√
2πσ2

∫ ∞

−∞
exp

(
− x2

2σ2

)
dx = 1 . (0.4)

Cylindrical polar co-ordinates (ρ, φ, z).
In cylindrical polar co-ordinates the position vector r is given
in terms of a radial distance ρ from an axis ez, a polar angle
φ, and the distance z along the axis:

r = ρ cosφ ex + ρ sinφ ey + z ez (0.5a)
= ρ eρ + z ez , (0.5b)

where 0 6 ρ <∞, 0 6 φ 6 2π and −∞ < z <∞.

Remark. Often r and/or θ are used in place of ρ and/or φ
respectively (but then there is potential confusion with the dif-
ferent definitions of r and θ in spherical polar co-ordinates).

Spherical polar co-ordinates (r, θ, φ).

In spherical polar co-ordinates the position vector r is given in
terms of a radial distance r from the origin, a ‘latitude’ angle
θ, and a ‘longitude’ angle φ:

r = r sin θ cosφ ex + r sin θ sinφ ey + r cos θ ez (0.6a)
= rer , (0.6b)

where 0 6 r <∞, 0 6 θ 6 π and 0 6 φ 6 2π.

Taylor’s theorem for functions of more than one variable. Let f(x, y) be a function of two vari-
ables, then

f(x+ δx, y + δy) = f(x, y) + δx
∂f

∂x
+ δy

∂f

∂y

+
1
2!

(
(δx)2

∂2f

∂x2
+ 2δxδy

∂2f

∂x∂y
+ (δy)2

∂2f

∂y2

)
. . . . (0.7)

Exercise. Let g(x, y, z) be a function of three variables. Expand g(x+ δx, y+ δy, z + δz) correct to
O(δx, δy, δz).

Partial differentiation. For variables q1, q2, q3,(
∂q1
∂q1

)
q2,q3

= 1 ,
(
∂q1
∂q2

)
q1,q3

= 0 , etc. , (0.8a)
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and hence
Key
Result

∂qi
∂qj

= δij , (0.8b)

where δij is the Kronecker delta:

δij =
{

1 if i = j
0 if i 6= j

. (0.9)

The chain rule. Let h(x, y) be a function of two variables, and suppose that x and y are themselves
functions of a variable s, then

dh
ds

=
∂h

∂x

dx
ds

+
∂h

∂y

dy
ds

. (0.10a)

Suppose instead that h depends on n variables xi (i = 1, . . . , n), so that h = h(x1, x2, . . . , xn). If
the xi depend on m variables sj (j = 1, . . . ,m), then for j = 1, . . . ,m

Key
Result

∂h

∂sj
=

n∑
i=1

∂h

∂xi

∂xi

∂sj
. (0.10b)

An identity. If δij is the Kronecker delta, then for aj (j = 1, 2, 3),

3∑
j=1

ajδ1j = a1δ11 + a2δ12 + a3δ13 = a1 , (0.11a)

and more generally
Key
Result

3∑
j=1

ajδij = a1δi1 + a2δi2 + a3δi3 = ai . (0.11b)

Line integrals. Let C be a smooth curve, then

Key
Result

∫
C

dr = −
∫
−C

dr . (0.12)

The transpose of a matrix. Let A be a 3× 3 matrix:

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (0.13a)

Then the transpose, AT, of this matrix is given by

AT =

A11 A21 A31

A12 A22 A32

A13 A23 A33

 . (0.13b)

Fourier series. Let f(x) be a function with period L, i.e. a function such that f(x+ L) = f(x). Then
the Fourier series expansion of f(x) is given by

Key
Result

f(x) = 1
2a0 +

∞∑
n=1

an cos
(

2πnx
L

)
+

∞∑
n=1

bn sin
(

2πnx
L

)
, (0.14a)

where

an =
2
L

∫ x0+L

x0

f(x) cos
(

2πnx
L

)
dx , (0.14b)

bn =
2
L

∫ x0+L

x0

f(x) sin
(

2πnx
L

)
dx , (0.14c)
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and x0 is an arbitrary constant. Also recall the orthogonality conditions∫ L

0

sin
2πnx
L

sin
2πmx
L

dx =
L
2
δnm , (0.15a)∫ L

0

cos
2πnx
L

cos
2πmx
L

dx =
L
2
δnm , (0.15b)∫ L

0

sin
2πnx
L

cos
2πmx
L

dx = 0 . (0.15c)

Let ge(x) be an even function, i.e. a function such that ge(−x) = ge(x), with period L = 2L. Then
the Fourier series expansion of ge(x) can be expressed as

ge(x) = 1
2a0 +

∞∑
n=1

an cos
(nπx
L

)
, (0.16a)

where

an =
2
L

∫ L

0

ge(x) cos
(nπx
L

)
dx . (0.16b)

Let go(x) be an odd function, i.e. a function such that go(−x) = −go(x), with period L = 2L. Then
the Fourier series expansion of go(x) can be expressed as

go(x) =
∞∑

n=1

bn sin
(nπx
L

)
, (0.17a)

where

bn =
2
L

∫ L

0

go(x) sin
(nπx
L

)
dx . (0.17b)

Recall that if integrated over a half period, the ‘orthogonality’ conditions require care since∫ L

0

sin
nπx

L
sin

mπx

L
dx =

L

2
δnm , (0.18a)∫ L

0

cos
nπx

L
cos

mπx

L
dx =

L

2
δnm , (0.18b)

but ∫ L

0

sin
nπx

L
cos

mπx

L
dx =


0 if n+m is even,

2nL
π(n2 −m2)

if n+m is odd.
(0.18c)
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Suggestions.

Examples.

1. Include Ampere’s law, Faraday’s law, etc., somewhere (see 1997 Vector Calculus notes).

Additions/Subtractions?

1. Remove all the \enlargethispage commands.

2. 2D divergence theorem, Green’s theorem (e.g. as a special case of Stokes’ theorem).

3. Add Fourier transforms of cosx, sinx and periodic functions.

4. Check that the addendum at the end of § 3 has been incorporated into the main section.

5. Swap § 3.3.2 and § 3.3.1.

6. Swap § 4.2 and § 4.3.

7. Explain that observables in quantum mechanics are Hermitian operators.

8. Come up with a better explanation of why for a transformation matrix, say A, detA 6= 0.
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1 Vector Calculus

1.0 Why Study This?

Many scientific quantities just have a magnitude, e.g. time, temperature, density, concentration. Such
quantities can be completely specified by a single number. We refer to such numbers as scalars. You have
learnt how to manipulate such scalars (e.g. by addition, subtraction, multiplication, differentiation) since
your first day in school (or possibly before that).

However other quantities have both a magnitude and a direction, e.g. the position of a particle, the
velocity of a particle, the direction of propagation of a wave, a force, an electric field, a magnetic field.
You need to know how to manipulate these quantities (e.g. by addition, subtraction, multiplication,
differentiation) if you are to be able to describe them mathematically.

1.1 Vectors and Bases

Definition. A quantity that is specified by a
[positive] magnitude and a direction in space
is called a vector.

Example. A point P in 3D (or 2D) space can be
specified by giving its position vector, r, from
some chosen origin 0.

Vectors exist independently of any coordinate system. However, it is often very useful to describe them
in term of a basis. Three non-zero vectors e1, e2 and e3 can form a basis in 3D space if they do not all
lie in a plane, i.e. they are linearly independent. Any vector can be expressed in terms of scalar multiples
of the basis vectors:

a = a1e1 + a2e2 + a3e3. (1.1)

The ai (i = 1, 2, 3) are said to the components of the vector a with respect to this basis.

Note that the ei (i = 1, 2, 3) need not have unit magnitude and/or be orthogonal. However calculations,
etc. are much simpler if the ei (i = 1, 2, 3) define a orthonormal basis, i.e. if the basis vectors

• have unit magnitude — |ei| = 1 (i = 1, 2, 3);

• are mutually orthogonal — ei · ej = 0 if i 6= j.

These conditions can be expressed more concisely as

ei · ej = δij (i, j = 1, 2, 3) , (1.2)

where δij is the Kronecker delta:

δij =
{

1 if i = j
0 if i 6= j

. (1.3)

The orthonormal basis is right-handed if

e1 × e2 = e3, (1.4)

so that the ordered triple scalar product of the
basis vectors is positive:

[e1, e2, e3] = e1 × e2 · e3 = 1 . (1.5)
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Exercise. Show using (1.2) and (1.4) that

e2 × e3 = e1 and that e3 × e1 = e2 . (1.6)

1.1.1 Cartesian Coordinate Systems

We can set up a Cartesian coordinate system by
identifying e1, e2 and e3 with unit vectors point-
ing in the x, y and z directions respectively. The
position vector r is then given by

r = x e1 + y e2 + z e3 (1.7a)
= (x, y, z) . (1.7b)

Remarks.

1. We shall sometimes write x1 for x, x2 for y and x3 for z.

2. Alternative notations for a Cartesian basis in R3 (i.e. 3D) include

e1 = ex = i , e2 = ey = j and e3 = ez = k , (1.8)

for the unit vectors in the x, y and z directions respectively. Hence from (1.2) and (1.6)

i.i = j.j = k.k = 1 , i.j = j.k = k.i = 0 , (1.9a)
i× j = k , j× k = i , k× i = j . (1.9b)

1.2 Vector Calculus in Cartesian Coordinates.

1.2.1 The Gradient of a Scalar Field

Let ψ(r) be a scalar field, i.e. a scalar function
of position r = (x, y, z).

Examples of scalar fields include temperature
and density.

Consider a small change to the position r, say
to r + δr. This small change in position will
generally produce a small change in ψ. We es-
timate this change in ψ using the Taylor series
for a function of many variables, as follows:

δψ = ψ(r + δr)− ψ(r) = ψ(x+ δx, y + δy, z + δz)− ψ(x, y, z)

=
∂ψ

∂x
δx+

∂ψ

∂y
δy +

∂ψ

∂z
δz + . . .

=
(
∂ψ

∂x
ex +

∂ψ

∂y
ey +

∂ψ

∂z
ez

)
· (δx ex + δy ey + δz ez) + . . .

= ∇ψ · δr + . . . .

In the limit when δ• becomes infinitesimal we write d• for δ•.8 Thus we have that

dψ = ∇ψ · dr , (1.10)

8 This is a bit of a ‘fudge’ because, strictly, a differential d• need not be small . . . but there is no quick way out.
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where the gradient of ψ is defined by

gradψ ≡ ∇ψ =
∂ψ

∂x
ex +

∂ψ

∂y
ey +

∂ψ

∂z
ez =

3∑
j=1

∂ψ

∂xj
ej (1.11)

We can define the vector differential operator ∇ (pronounced ‘grad’) independently of ψ by writing

Key
Result

∇ ≡ ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
=
∑

j

ej
∂

∂xj
, (1.12)

where
∑

j

will henceforth be used as a shorthand for
3∑

j=1

.

1.2.2 Example

Find ∇f , where f(r) is a function of r = |r|. We will use this result later.

Answer. First recall that r2 = x2 + y2 + z2. Hence

2r
∂r

∂x
= 2x , i.e.

∂r

∂x
=
x

r
. (1.13a)

Similarly, by use of the permutations x→ y, y → z and z → x,

∂r

∂y
=
y

r
,

∂r

∂z
=
z

r
. (1.13b)

Hence, from the definition of gradient (1.11),

Key
Result

∇r =
(
∂r

∂x
,
∂r

∂y
,
∂r

∂z

)
=
(x
r
,
y

r
,
z

r

)
=

r
r
. (1.14)

Similarly, from the definition of gradient (1.11) (and from standard results for the derivative of a function
of a function),

∇f(r) =
(
∂f(r)
∂x

,
∂f(r)
∂y

,
∂f(r)
∂z

)
=

(
df
dr

∂r

∂x
,

df
dr

∂r

∂y
,

df
dr

∂r

∂z

)
= f ′(r)∇r (1.15a)

= f ′(r)
r
r
. (1.15b)

1.2.3 The Geometrical Significance of Gradient

The normal to a surface. Suppose that a surface in 3D
space is defined by the condition that ψ(r) = constant.
Also suppose that for an infinitesimal, but non-zero, dis-
placement vector dr

dψ ≡ ψ(r + dr)− ψ(r) = 0 . (1.16)

Then dr is a tangent to the surface.

Further suppose that ∇ψ 6= 0, then from (1.10) it fol-
lows that ∇ψ is orthogonal to dr. Moreover, since we can
choose dr to be in the direction of any tangent, we con-
clude that ∇ψ is orthogonal to all tangents.
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Hence ∇ψ must be orthogonal/normal to surfaces of constant ψ, and so if n̂ is the unit normal to a
surface of constant ψ, then (upto a sign)

n̂ =
∇ψ

|∇ψ|
. (1.17)

1/02

We also note from (1.10) that dψ is a maximum when dr is parallel to ∇ψ, i.e. the direction of ∇ψ is
the direction in which ψ is changing most rapidly.

The directional derivative. More generally consider the
rate of change of ψ in the direction given by the unit
vector l. To this end consider ψ(r + sl). If we regard this
as a function of the single variable s then we may use a
Taylor series to deduce that

δψ = ψ(r + δs l)− ψ(r) = δs
d
ds
ψ(r + sl)

∣∣∣∣
s=0

+ . . . ,

or in the limit of δs becoming infinitesimal,

dψ = ds
d
ds
ψ(r + sl)

∣∣∣∣
s=0

. (1.18)

Next we note that if we substitute

dr = ds l (1.19)

into (1.10), then we obtain

dψ = ds (l ·∇ψ) . (1.20)

Equating (1.18) and (1.20) yields

l ·∇ψ =
d
ds
ψ(r + sl)

∣∣∣∣
s=0

. (1.21)

Hence l ·∇ψ is the rate of change of ψ in the direction l. It is referred to as a directional derivative. 1/03

1.2.4 Applications

1. Find the unit normal at the point r(x, y, z) to the surface

ψ(r) ≡ xy + yz + zx = −c , (1.22)

where c is a positive constant. Hence find the points where the tangents to the surface are parallel
to the (x, y) plane.

Answer. First calculate

∇ψ = (y + z, x+ z, y + x) . (1.23)

Then from (1.17) the unit normal is given by

n̂ =
∇ψ

|∇ψ|
=

(y + z, x+ z, y + x)√
2(x2 + y2 + z2 + xy + xz + yz

. (1.24)

The tangents to the surface ψ(r) = −c are parallel to the
(x, y) plane when the normal is parallel to the z-axis, i.e. when
n̂ = (0, 0, 1) or n̂ = (0, 0,−1), i.e. when

y = −z and x = −z . (1.25)
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Hence from the equation for the surface, i.e. (1.22), the points where the tangents to the surface
are parallel to the (x, y) plane satisfy

z2 = c . (1.26)

1/04

2. Unlectured. A mountain’s height z = h(x, y) depends on Cartesian coordinates x, y according to
h(x, y) = 1− x4 − y4 > 0. Find the point at which the slope in the plane y = 0 is greatest.

Answer. The slope of a path is the rate of change in the vertical direction divided by the rate of
change in the horizontal direction. So consider a path on the mountain parameterised by s:

r(s) = (x(s), y(s), h(x(s), y(s))) . (1.27)

As s varies, the rate of change with s in the vertical direc-
tion is dh

ds , while the rate of change with s in the horizontal

direction is
√(

dx
ds

)2 +
(

dy
ds

)2. Hence the slope of the path
is given by

slope =
dh
ds√(

dx
ds

)2 +
(

dy
ds

)2
=

∂h
∂x

dx
ds + ∂h

∂y
dy
ds√(

dx
ds

)2 +
(

dy
ds

)2 from (0.10a)

= l ·∇h , (1.28)

where

l =
1√(

dx
ds

)2 +
(

dy
ds

)2
(

dx
ds
,
dy
ds
, 0
)
. (1.29)

Thus the slope is a directional derivative. On y = 0

slope =
−4x3 dx

ds∣∣dx
ds

∣∣ = −4x3 sign
(

dx
ds

)
. (1.30)

Therefore the magnitude of the slope is largest where |x| is largest, i.e. at the edge of the mountain
|x| = 1. It follows that max |slope| = 4.

1.3 The Divergence and Curl

1.3.1 Vector fields

∇ψ is an example of a vector field, i.e. a vector specified at each point r in space. More generally, we
have for a vector field F(r),

F(r) = Fx(r)ex + Fy(r)ey + Fz(r)ez =
∑

j

Fj(r)ej , (1.31)

where Fx, Fy, Fz, or alternatively Fj (j = 1, 2, 3), are the components of F in this Cartesian coordinate
system. Examples of vector fields include current, electric and magnetic fields, and fluid velocities.

We can apply the ∇ vector operator to vector fields by means of dot and cross products.
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1.3.2 The Divergence and Curl of a Vector Field

Divergence. The divergence of F is the scalar field

divF ≡ ∇ · F =
(
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

)
· (Fxex + Fyey + Fzez)

=
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
(1.32)

=
∑

j

∂Fj

∂xj
, (1.33)

from using (1.2) and remembering that in a Cartesian coordinate system the basis vectors do not

Key
Result

depend on position.

Curl. The curl of F is the vector field

curl F ≡ ∇× F =
(
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

)
× (Fxex + Fyey + Fzez)

=
(
∂Fz

∂y
− ∂Fy

∂z

)
ex +

(
∂Fx

∂z
− ∂Fz

∂x

)
ey +

(
∂Fy

∂x
− ∂Fx

∂y

)
ez (1.34a)

=

∣∣∣∣∣∣
ex ey ez

∂x ∂y ∂z

Fx Fy Fz

∣∣∣∣∣∣ (1.34b)

=

∣∣∣∣∣∣
e1 e2 e3

∂x1 ∂x2 ∂x3

F1 F2 F3

∣∣∣∣∣∣ , (1.34c)

from using (1.8) and (1.9b), and remembering that in a Cartesian coordinate system the basis

Key
Result

vectors do not depend on position. Here ∂x = ∂
∂x , etc..

1/01

1.3.3 Examples

1. Unlectured. Find the divergence and curl of the vector field F = (x2y, y2z, z2x).

Answer.

∇ · F =
∂(x2y)
∂x

+
∂(y2z)
∂y

+
∂(z2x)
∂z

= 2xy + 2yz + 2zx . (1.35)

∇× F =

∣∣∣∣∣∣∣
ex ey ez

∂x ∂y ∂z

x2y y2z z2x

∣∣∣∣∣∣∣
= −y2ex − z2ey − x2ez

= −(y2, z2, x2) . (1.36)

2. Find ∇ · r and ∇× r.

Answer. From the definition of divergence (1.32), and recalling that r = (x, y, z), it follows that

∇ · r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3 . (1.37)

Next, from the definition of curl (1.34a) it follows that

∇× r =
(
∂z

∂y
− ∂y

∂z
,
∂x

∂z
− ∂z

∂x
,
∂y

∂x
− ∂x

∂y

)
= 0. (1.38)
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1.3.4 F ·∇ .

In (1.32) we defined the divergence of a vector field F, i.e. the scalar ∇ ·F. The order of the operator ∇
and the vector field F is important here. If we invert the order then we obtain the scalar operator

(F ·∇) ≡ Fx
∂

∂x
+ Fy

∂

∂y
+ Fz

∂

∂z
=
∑

j

Fj
∂

∂xj
. (1.39)

Remark. As far as notation is concerned, for scalar ψ

F · (∇ψ) =
∑

j

Fj

(
∂ψ

∂xj

)
=
∑

j

(
Fj

∂

∂xj

)
ψ = (F ·∇)ψ .

However, the right hand form is preferable. This is because for a vector G, the ith component of Recipe

(F ·∇)G is unambiguous, namely

((F ·∇)G)i =
∑

j

Fj
∂Gi

∂xj
, (1.40)

while the ith component of F · (∇G) is not, i.e. it is not clear whether the ith component of
F · (∇G) is ∑

j

Fj
∂Gi

∂xj
or

∑
j

Fj
∂Gj

∂xi
.

1.4 Vector Differential Identities

Calculations involving ∇ can be much speeded up when certain vector identities are known. There are
a large number of these! A short list is given below of the most common. Here ψ is a scalar field and F,
G are vector fields.

∇ · (ψF) = ψ∇ · F + (F ·∇)ψ , (1.41a)

∇× (ψF) = ψ (∇× F) + (∇ψ)× F , (1.41b)

∇ · (F×G) = G · (∇× F)− F · (∇×G) , (1.41c)

∇× (F×G) = F (∇ ·G)−G (∇ · F) + (G ·∇)F− (F ·∇)G , (1.41d)

∇(F ·G) = (F ·∇)G + (G ·∇)F + F× (∇×G) + G× (∇× F) . (1.41e)

Example Verifications.

(1.41a):

∇ · (ψF) =
∂(ψ Fx)
∂x

+
∂(ψ Fy)
∂y

+
∂(ψ Fz)
∂z

= ψ
∂Fx

∂x
+ Fx

∂ψ

∂x
+ ψ

∂Fy

∂y
+ Fy

∂ψ

∂y
+ ψ

∂Fz

∂z
+ Fz

∂ψ

∂z

= ψ
∂Fx

∂x
+ ψ

∂Fy

∂y
+ ψ

∂Fz

∂z
+ Fx

∂ψ

∂x
+ Fy

∂ψ

∂y
+ Fz

∂ψ

∂z

= ψ∇ · F + (F ·∇)ψ .
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Unlectured. (1.41c):

∇ · (F×G) =
∂

∂x
(FyGz − FzGy) +

∂

∂y
(FzGx − FxGz) +

∂

∂z
(FxGy − FyGx)

= Gz
∂Fy

∂x
+ Fy

∂Gz

∂x
− Fz

∂Gy

∂x
−Gy

∂Fz

∂x
+Gx

∂Fz

∂y
+ Fz

∂Gx

∂y

−Fx
∂Gz

∂y
−Gz

∂Fx

∂y
+Gy

∂Fx

∂z
+ Fx

∂Gy

∂z
− Fy

∂Gx

∂z
−Gx

∂Fy

∂z

= Gx

(
∂Fz

∂y
− ∂Fy

∂z

)
+Gy

(
∂Fx

∂z
− ∂Fz

∂x

)
+Gz

(
∂Fy

∂x
− ∂Fx

∂y

)
+Fx

(
∂Gy

∂z
− ∂Gz

∂y

)
+ Fy

(
∂Gz

∂x
− ∂Gx

∂z

)
+ Fz

(
∂Gx

∂y
− ∂Gy

∂x

)
= G · (∇× F)− F · (∇×G) .

Warnings.

1. Always remember what terms the differential operator is acting on, e.g. is it all terms to the right
or just some?

2. Be very very careful when using standard vector identities where you have just replaced a vector
with ∇. Sometimes it works, sometimes it does not! For instance for constant vectors D, F and G

F · (D×G) = D · (G× F) = −D · (F×G) .

However for ∇ and vector functions F and G

F · (∇×G) 6= ∇ · (G× F) = −∇ · (F×G) ,

since

F · (∇×G) = Fx

(
∂Gz

∂y
− ∂Gy

∂z

)
+ Fy

(
∂Gx

∂z
− ∂Gz

∂x

)
+ Fz

(
∂Gy

∂x
− ∂Gx

∂y

)
,

while

∇ · (G× F) = Fx

(
∂Gz

∂y
− ∂Gy

∂z

)
+ Fy

(
∂Gx

∂z
− ∂Gz

∂x

)
+ Fz

(
∂Gy

∂x
− ∂Gx

∂y

)
+Gx

(
∂Fy

∂z
− ∂Fz

∂y

)
+Gy

(
∂Fz

∂x
− ∂Fx

∂z

)
+Gz

(
∂Fx

∂y
− ∂Fy

∂x

)
.

1.5 Second Order Vector Differential Operators

1.5.1 div curl and curl grad

Using the definitions grad, div and curl, i.e. (1.11), (1.32) and (1.34a), and assuming the equality of
mixed derivatives, we have that

curl (gradψ) = ∇× (∇ψ) =
(
∂

∂y

∂ψ

∂z
− ∂

∂z

∂ψ

∂y
,
∂

∂z

∂ψ

∂x
− ∂

∂x

∂ψ

∂z
,
∂

∂x

∂ψ

∂y
− ∂

∂y

∂ψ

∂x

)
= 0 . (1.42)

and

div(curlF) = ∇ · (∇× F) =
∂

∂x

(
∂Fz

∂y
− ∂Fy

∂z

)
+

∂

∂y

(
∂Fx

∂z
− ∂Fz

∂x

)
+

∂

∂z

(
∂Fy

∂x
− ∂Fx

∂y

)
= 0 , (1.43)
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Remarks.

1. Since by the standard rules for scalar triple products ∇ · (∇×F) ≡ (∇×∇) ·F, we can summarise
both of these identities by

Key
Result∇×∇ ≡ 0 . (1.44)

2. There are important converses to (1.42) and (1.43). The following two assertions can be proved
(but not here).

(a) Suppose that ∇× F = 0; the vector field F(r) is said to be irrotational. Then there exists a
scalar potential, ϕ(r), such that

F = ∇ϕ . (1.45)

Application. A force field F such that ∇ × F = 0 is said to the conservative. Gravity is a
conservative force field. The above result shows that we can define a gravitational potential ϕ
such that F = ∇ϕ.

(b) Suppose that ∇ · B = 0; the vector field B(r) is said to be solenoidal. Then there exists a
non-unique vector potential, A(r), such that

B = ∇×A . (1.46)

Application. One of Maxwell’s equations for a magnetic field, B, states that ∇ ·B = 0. The
above result shows that we can define a magnetic vector potential, A, such that B = ∇×A.

Example. Evaluate ∇ · (∇p×∇q), where p and q are scalar fields. We will use this result later.

Answer. Identify ∇p and ∇q with F and G respectively in the vector identity (1.41c). Then it
follows from using (1.44) that

∇ · (∇p×∇q) = ∇q · (∇×∇p)−∇p · (∇×∇q) = 0 . (1.47)

2/02

1.5.2 The Laplacian Operator ∇2

From the definitions of div and grad

div(gradψ) = ∇ · (∇ψ) =
∂

∂x

(
∂ψ

∂x

)
+

∂

∂y

(
∂ψ

∂y

)
+

∂

∂z

(
∂ψ

∂z

)
=
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ . (1.48)

We conclude that the Laplacian operator, ∇2 = ∇ ·∇, is given in Cartesian coordinates by

∇2 = ∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.49)

Remarks.

1. The Laplacian operator ∇2 is very important in the natural sciences. For instance it occurs in

(a) Poisson’s equation for a potential ϕ(r):

∇2ϕ = ρ , (1.50a)

where (with a suitable normalisation)

i. ρ(r) is charge density in electromagnetism (when (1.50a) relates charge and electric po-
tential);

ii. ρ(r) is mass density in gravitation (when (1.50a) relates mass and gravitational potential).
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(b) Schrödinger’s equation for a non-relativistic quantum mechanical particle of mass m in a
potential V (r):

− ~2

2m
∇2ψ + V (r)ψ = i~

∂ψ

∂t
, (1.50b)

where ψ is the quantum mechanical wave function and ~ is Planck’s constant divided by 2π.

(c) Helmholtz’s equation
∇2f + ω2f = 0 , (1.50c)

which governs the propagation of fixed frequency waves (e.g. fixed frequency sound waves).
Helmholtz’s equation is a 3D generalisation of the simple harmonic resonator

d2f

dx2
+ ω2f = 0 .

2/03

2. Although the Laplacian has been introduced by reference to its effect on a scalar field (in our
case ψ), it also has meaning when applied to vectors. However some care is needed. On the first
example sheet you will prove the vector identity

∇× (∇× F) = ∇(∇ · F)−∇2F . (1.51a)

The Laplacian acting on a vector is conventionally defined by rearranging this identity to obtain

∇2F = ∇(∇ · F)−∇× (∇× F) . (1.51b)
2/04

1.5.3 Examples

1. Find ∇2rn = div(∇rn) and curl(∇rn). We will use this result later.

Answer. Put f(r) = rn in (1.15b) to obtain

∇rn = nrn−1 r
r

= nrn−2 (x, y, z) . (1.52)

So from the definition of divergence (1.32):

∇2rn = ∇ · (∇rn) =
∂(nrn−2x)

∂x
+
∂(nrn−2y)

∂y
+
∂(nrn−2z)

∂z

= nrn−2 + n(n− 2)rn−3 x

r
x+ . . . using (1.13a)

= 3nrn−2 + n(n− 2)rn−4(x2 + y2 + z2)

= n(n+ 1)rn−2 . (1.53)

From the definition of curl (1.34a):

∇× (∇rn) =
(
∂(nrn−2z)

∂y
− ∂(nrn−2y)

∂z
, . . . , . . .

)
=
(
n(n− 2)rn−3 y

r
z − n(n− 2)rn−3 z

r
y, . . . , . . .

)
using (1.13a)

= 0 . (1.54)

Check. Note that from setting n = 2 in (1.52) we have that ∇r2 = 2r. It follows that (1.53) and
(1.54) with n = 2 reproduce (1.37) and (1.38) respectively. (1.54) also follows from (1.42).

2. Unlectured. Find the Laplacian of sin r
r .

Answer. Since the Laplacian consists of first taking a gradient, we first note from using result
(1.15a), i.e. ∇f(r) = f ′(r)∇r, that

∇
(

sin r
r

)
=
(

cos r
r

− sin r
r2

)
∇r . (1.55a)
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Further, we recall from (1.14) that
∇r =

r
r
, (1.55b)

and also from (1.53) with n = 1 that

∇ · (∇r) =
2
r
. (1.55c)

Hence

∇2

(
sin r
r

)
= ∇ ·∇

(
sin r
r

)
= ∇ ·

((
cos r
r

− sin r
r2

)
∇r

)
from (1.55a)

=
(

cos r
r

− sin r
r2

)
∇ ·∇r + ∇r ·∇

(
cos r
r

− sin r
r2

)
from identity (1.41a)

= 2
(

cos r
r2

− sin r
r3

)
+

r
r
·∇

(
cos r
r

− sin r
r2

)
from (1.55b) & (1.55c)

= 2
(

cos r
r2

− sin r
r3

)
+

r
r
·
(
− sin r

r
− 2 cos r

r2
+

2 sin r
r3

)
∇r using (1.15a) again

= − sin r
r

. (1.56)

Remark. It follows that f = sin r
r satisfies Helmholtz’s equation (1.50c) for ω = 1.

1.6 The Divergence Theorem and Stokes’ Theorem

These are two very important integral theorems for vector fields that have many scientific applications.

1.6.1 The Divergence Theorem (Gauss’ Theorem)

Divergence Theorem. Let S be a ‘nice’ surface9 enclosing a volume V in R3, with a normal n̂ that points
outwards from V. Let u be a ‘nice’ vector field.10 Then

Key
Result

∫∫∫
V

∇ · udV =
∫∫
S(V)

u · dS , (1.57)

where dV is the volume element, dS = n̂dS is the vector surface element, n̂ is the unit normal to
the surface S and dS is a small element of surface area. In Cartesian coordinates

dV = dxdy dz , (1.58a)
and

dS = σxdy dz ex + σydz dx ey + σzdxdy ez , (1.58b)

where σx = sign(n̂ · ex), σy = sign(n̂ · ey) and σz = sign(n̂ · ez).

At a point on the surface, u · n̂ is the flux of
u across the surface at that point. Hence the
divergence theorem states that ∇ ·u integrated
over a volume V is equal to the total flux of
u across the closed surface S surrounding the
volume.

9 For instance, a bounded, piecewise smooth, orientated, non-intersecting surface.
10 For instance a vector field with continuous first-order partial derivatives throughout V.
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Remark. The divergence theorem relates a triple integral to a double integral. This is analogous to the
second fundamental theorem of calculus, i.e.∫ h2

h1

df
dz

dz = f(h2)− f(h1) , (1.59)

which relates a single integral to a function. 2/01

Outline Proof. Suppose that S is a surface enclosing a volume V such that Cartesian axes can be chosen
so that any line parallel to any one of the axes meets S in just one or two points (e.g. a convex
surface). We observe that∫∫∫

V

∇ · udV =
∫∫∫
V

(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

)
dV ,

comprises of three terms; we initially concentrate on the
∫∫∫

V
∂uz

∂z dV term.

Let region A be the projection of S onto the
xy-plane. Let the lower/upper surfaces, S1/S2

respectively, be parameterised by

S1 : r = (x, y, h1(x, y))
S2 : r = (x, y, h2(x, y)) .

Then using the second fundamental theorem of calculus (1.59)∫∫∫
V

∂uz

∂z
dxdy dz =

∫∫
A

[∫ h2

z=h1

∂uz

∂z
dz

]
dxdy

=
∫∫
A

(uz(x, y, h2(x, y))− uz(x, y, h1(x, y)) dxdy . (1.60)

Now consider the projection of a surface element dS on the upper surface onto the xy plane. It
follows geometrically that dxdy = | cosα|dS, where α is the angle between ez and the unit normal
n̂; hence on S2

dxdy = ez · n̂dS = ez · dS . (1.61a)

On the lower surface S1 we need to dot n̂ with −ez in order to get a positive area; hence

dxdy = −ez · dS . (1.61b)

We note that (1.61a) and (1.61b) are consistent with (1.58b) once the tricky issue of signs is sorted
out. Using (1.58a), (1.61a) and (1.61b), equation (1.60) can be rewritten as∫∫∫

V

∂uz

∂z
dV =

∫∫
S2

uz ez · dS +
∫∫
S1

uz ez · dS =
∫∫
S

uz ez · dS , (1.62a)

since S1 + S2 = S. Similarly by permutation (i.e. x→ y, y → z and z → x),∫∫∫
V

∂uy

∂y
dV =

∫∫
S

uy ey · dS ,
∫∫∫
V

∂ux

∂x
dV =

∫∫
S

ux ex · dS . (1.62b)

Adding the above results we obtain the divergence theorem (1.57):∫∫∫
V

∇ · udV =
∫∫
S

u · dS .
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1.6.2 Stokes’ Theorem

Let S be a ‘nice’ open surface bounded by a ‘nice’ closed curve C.11 Let u(r) be a ‘nice’ vector field.12

Then
Key
Result

∫∫
S

∇× u · dS =
∮
C

u · dr , (1.63)

where the line integral is taken in the direction of C as specified by the ‘right-hand rule’.

Stokes’ theorem thus states that the flux of ∇ × u
across an open surface S is equal to the circulation
of u round the bounding curve C.

Outline Proof. Given an extra half lecture I might
just be able to get somewhere without losing too
many of you. If you are really interested then my IA
Mathematical Tripos notes on Vector Calculus are
available on the WWW at

http://damtp.cam.ac.uk/user/cowley/teaching/.

1.6.3 Examples and Applications

1. A body is acted on by a hydrostatic pressure force
p = −ρgz, where ρ is the density of the surrounding
fluid, g is gravity and z is the vertical coordinate.
Find a simplified expression for the pressure force
on the body starting from

F = −
∫∫
S

p dS . (1.64)

Answer. Consider the individual components of u
and use the divergence theorem. Then

ez · F = −
∫∫
S

p ez · dS = −
∫∫∫
V

∇ · (p ez) dV = −
∫∫∫
V

∂(−ρgz)
∂z

dV = g

∫∫∫
V

ρdV = Mg ,

(1.65a)
where M is the mass of the fluid displaced by the body. Similarly

ex · F = −
∫∫∫
V

∇ · (p ex) dV = −
∫∫∫
V

∂(−ρgz)
∂x

dV = 0 , (1.65b)

and ey ·F = 0. Hence we have Archimedes’ Theorem that an immersed body experiences a loss of
weight equal to the weight of the fluid displaced:

F = Mg ez . (1.65c)

2. Show that provided there are no singularities, the integral∫
C

∇ϕ · dr , (1.66)

11 Or to be slightly more precise: let S be a piecewise smooth, open, orientated, non-intersecting surface bounded by a
simple, piecewise smooth, closed curve C.

12 For instance a vector field with continuous first-order partial derivatives on S.
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where ϕ is a scalar field and C is an open path joining two fixed points A and B, is independent of
the path chosen between the points.

Answer. Consider two such paths: C1 and C2. Form
a closed curve Ĉ from these two curves. Then using
Stokes’ Theorem and the result (1.42) that a curl of
a gradient is zero, we have that∫
C1

∇ϕ · dr−
∫
C2

∇ϕ · dr =
∮
bC

∇ϕ · dr

=
∫∫

bS
∇× (∇ϕ) · dS

= 0 .

where Ŝ is a nice open surface bounding Ĉ. Hence∫
C1

∇ϕ · dr =
∫
C2

∇ϕ · dr . (1.67)

Application. If ϕ is the gravitational potential, then g = −∇ϕ is the gravitational force, and∫
C(−∇ϕ)·dr is the work done against gravity in moving from A to B. The above result demonstrates

that the work done is independent of path.
3/02

1.6.4 Interpretation of divergence

Let a volume V be enclosed by a surface S, and consider
a limit process in which the greatest diameter of V tends
to zero while keeping the point r0 inside V. Then from
Taylor’s theorem with r = r0 + δr,∫∫∫

V
∇ · u(r) dV =

∫∫∫
V

(∇ · u(r0) + . . . ) dV = ∇ · u(r0) |V|+ . . . ,

where |V| is the volume of V. Thus using the divergence theorem (1.57)

∇ · u = lim
|V|→0

1
|V|

∫∫
S

u · dS , (1.68)

where S is any ‘nice’ small closed surface enclosing a volume V. It follows that ∇ · u can be interpreted
as the net rate of flux outflow at r0 per unit volume.

Application. Suppose that v is a velocity field. Then

∇ · v > 0 ⇒
∫∫
S

v · dS > 0 ⇒ net positive flux ⇒ there exists a source at r0;

∇ · v < 0 ⇒
∫∫
S

v · dS < 0 ⇒ net negative flux ⇒ there exists a sink at r0.

1.6.5 Interpretation of curl

Let an open smooth surface S be bounded by a curve C.
Consider a limit process in which the point r0 remains
on S, the greatest diameter of S tends to zero, and the
normals at all points on the surface tend to a specific
direction (i.e. the value of n̂ at r0). Then from Taylor’s
theorem with r = r0 + δr,
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∫∫
S

(∇× u(r)) · dS =
∫∫
S

(∇× u(r0) + . . . ) · dS = ∇× u(r0) · n̂ |S|+ . . . ,

where |S| is the area of S. Thus using Stokes’ theorem (1.63)

n̂ · (∇× u) = lim
S→0

1
|S|

∮
C

u · dr , (1.69)

where S is any ‘nice’ small open surface with a bounding curve C. It follows that n̂ · (∇ × u) can be
interpreted as the circulation about n̂ at r0 per unit area. 3/03

Application.
Consider a rigid body rotating with angular velocity
ω about an axis through 0. Then the velocity at a
point r in the body is given by

v = ω × r . (1.70)

Suppose that C is a circle of radius a in a plane nor-
mal to ω. Then the circulation of v around C is∮

C

v · dr =
∫ 2π

0

(ωa) adφ = 2πa2ω . (1.71)

Hence from (1.69)

ω̂ · (∇× v) = lim
a→0

1
πa2

∮
C

v · dr = 2ω . (1.72)

We conclude that the curl is a measure of the local rotation of a vector field.

Exercise. Show by direct evaluation that if v = ω × r then ∇× v = 2ω. 3/04

1.7 Orthogonal Curvilinear Coordinates

1.7.1 What Are Orthogonal Curvilinear Coordinates?

There are many ways to describe the position of points in space. One way is to define three independent
sets of surfaces, each parameterised by a single variable (for Cartesian coordinates these are orthogonal
planes parameterised, say, by the point on the axis that they intercept). Then any point has ‘coordinates’
given by the labels for the three surfaces that intersect at that point.

The unit vectors analogous to e1, etc. are the
unit normals to these surfaces. Such coordinates
are called curvilinear. They are not generally much
use unless the orthonormality condition (1.2), i.e.
ei · ej = δij , holds; in which case they are called
orthogonal curvilinear coordinates. The most com-
mon examples are spherical and cylindrical polar co-
ordinates. For instance in the case of spherical po-
lar coordinates the independent sets of surfaces are
spherical shells and planes of constant latitude and
longitude.

It is very important to realise that there is a key difference between Cartesian coordinates and other Key
Pointorthogonal curvilinear coordinates. In Cartesian coordinates the directions of the basis vectors ex, ey, ez

are independent of position. This is not the case in other coordinate systems; for instance, er the normal
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to a spherical shell changes direction with position on the shell. It is sometimes helpful to display this
dependence on position explicitly:

ei ≡ ei(r) . (1.73)

1.7.2 Relationships Between Coordinate Systems

Suppose that we have non-Cartesian coordinates, qi (i = 1, 2, 3). Since we can express one coordinate
system in term of another, there will be a functional dependence of the qi on, say, Cartesian coordinates
x, y, z, i.e.

qi ≡ qi(x, y, z) (i = 1, 2, 3) . (1.74)

For cylindrical polar coordinates and spherical polar coordinates we know that:

Cylindrical Polar Spherical Polar
Coordinates Coordinates

q1 ρ = (x2 + y2)1/2 r = (x2 + y2 + z2)1/2

q2 φ = tan−1
(

y
x

)
θ = tan−1

(
(x2+y2)1/2

z

)
q3 z φ = tan−1(y/x)

Remarks

1. Note that qi = ci (i = 1, 2, 3), where the ci are constants, define three independent sets of surfaces,
each ‘labelled’ by a parameter (i.e. the ci). As discussed above, any point has ‘coordinates’ given
by the labels for the three surfaces that intersect at that point.

2. The equation (1.74) can be viewed as three simultaneous equations for three unknowns x, y, z. In
general these equations can be solved to yield the position vector r as a function of q = (q1, q2, q3),
i.e. r ≡ r(q) or

x = x(q1, q2, q3) , y = y(q1, q2, q3) , z = z(q1, q2, q3) . (1.75)

For instance:

Cylindrical Polar Spherical Polar
Coordinates Coordinates

x ρ cosφ r cosφ sin θ

y ρ sinφ r sinφ sin θ

z z r cos θ
3/01

1.7.3 Incremental Change in Position or Length.

Consider an infinitesimal change in position. Then, by the chain rule, the change dx in x(q1, q2, q3) due
to changes dqj in qj (i = 1, 2, 3) is

dx =
∂x

∂q1
dq1 +

∂x

∂q2
dq2 +

∂x

∂q3
dq3 =

∑
j

∂x

∂qj
dqj . (1.76)
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Using similar results for dy and dz, the vector displacement dr is

dr = dx ex + dy ey + dz ez

=

∑
j

∂x

∂qj
dqj

 ex +

∑
j

∂y

∂qj
dqj

 ey +

∑
j

∂z

∂qj
dqj

 ez

=
∑

j

(
∂x

∂qj
ex +

∂y

∂qj
ey +

∂z

∂qj
ez

)
dqj

=
∑

j

hj dqj , (1.77a)

where

hj =
∂x

∂qj
ex +

∂y

∂qj
ey +

∂z

∂qj
ez =

∂r(q)
∂qj

(j = 1, 2, 3) . (1.77b)

Thus the infinitesimal change in position dr is a vector sum of displace-
ments hj(r) dqj ‘along’ each of the three q-axes through r.

Remark. Note that the hj are in general functions of r, and hence the directions of the q-axes vary in
space. Consequently the q-axes are curves rather than straight lines; the coordinate system is said
to be a curvilinear one.

The vectors hj are not necessarily unit vectors, so it is convenient to write

hj = hj ej (j = 1, 2, 3) , (1.78)

where the hj are the lengths of the hj , and the ej are unit vectors i.e.

hj =
∣∣∣∣ ∂r∂qj

∣∣∣∣ and ej =
1
hj

∂r
∂qj

(j = 1, 2, 3) . (1.79)

Again we emphasise that the directions of the ej(r) will, in general, depend on position.

1.7.4 Orthogonality

For a general qj coordinate system the ej are not necessarily mutually orthogonal, i.e. in general

ei · ej 6= 0 for i 6= j .

However, for orthogonal curvilinear coordinates the ei are required to be mutually orthogonal at all
points in space, i.e.

ei · ej = 0 if i 6= j .

Since by definition the ej are unit vectors, we thus have that

ei · ej = δij . (1.80)

An identity. Recall from (0.11b) that
3∑

j=1

ajδij = ai . (1.81)
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Incremental Distance. In an orthogonal curvilinear coordinate system the expression for the incremental
distance, |dr|2 simplifies. We find that

|dr|2 = dr · dr =

(∑
i

hidqi ei

)
·

∑
j

hjdqj ej

 from (1.77a) and (1.78)

=
∑
i,j

(hidqi)(hjdqj) ei · ej

=
∑
i,j

(hidqi)(hjdqj) δij from (1.80)

=
∑

i

h2
i (dqi)

2 . from (1.81) with aj = hjdqj (1.82)
Key
Result

Remarks.

1. All information about orthogonal curvilinear coordinate systems is encoded in the three functions
hj (j = 1, 2, 3).

2. It is conventional to order the qi so that the coordinate system is right-handed.

1.7.5 Spherical Polar Coordinates

In this case q1 = r, q2 = θ, q3 = φ and

r = r sin θ cosφ ex + r sin θ sinφ ey + r cos θ ez

= (r sin θ cosφ, r sin θ sinφ, r cos θ) . (1.83)

Hence

∂r
∂q1

=
∂r
∂r

= (sin θ cosφ, sin θ sinφ, cos θ) ,

∂r
∂q2

=
∂r
∂θ

= (r cos θ cosφ, r cos θ sinφ,−r sin θ) ,

∂r
∂q3

=
∂r
∂φ

= (−r sin θ sinφ, r sin θ cosφ, 0) .

It follows from (1.79) that

h1 =
∣∣∣∣ ∂r∂q1

∣∣∣∣ = 1 , e1 = er = (sin θ cosφ, sin θ sinφ, cos θ) , (1.84a)

h2 =
∣∣∣∣ ∂r∂q2

∣∣∣∣ = r , e2 = eθ = (cos θ cosφ, cos θ sinφ,− sin θ) , (1.84b)

h3 =
∣∣∣∣ ∂r∂q3

∣∣∣∣ = r sin θ , e3 = eφ = (− sinφ, cosφ, 0) . (1.84c)

Remarks.

• ei · ej = δij and e1 × e2 = e3, i.e. spherical polar coordinates are a right-handed orthogonal
curvilinear coordinate system. If we had chosen, say, q1 = r, q2 = φ, q3 = θ, then we would have
ended up with a left-handed system.

• er, eθ and eφ are functions of position.

• Recalling from (1.77a) and (1.78) that the hj give the components of the displacement vector dr
along the r, θ, and φ axes, we have that

dr =
∑

j

hj dqj ej = dr er + r dθ eθ + r sin θ dφ eφ . (1.85)
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1.7.6 Cylindrical Polar Coordinates

In this case q1 = ρ, q2 = φ, q3 = z and

r = ρ cosφ ex + ρ sinφ ey + z ez

= (ρ cosφ, ρ sinφ, z) .

Exercise. Show that

∂r
∂q1

=
∂r
∂ρ

= (cosφ, sinφ, 0) ,

∂r
∂q2

=
∂r
∂φ

= (−ρ sinφ, ρ cosφ, 0) ,

∂r
∂q3

=
∂r
∂z

= (0, 0, 1) .

and hence that

h1 =
∣∣∣∣ ∂r∂q1

∣∣∣∣ = 1 , e1 = eρ = (cosφ, sinφ, 0) , (1.86a)

h2 =
∣∣∣∣ ∂r∂q2

∣∣∣∣ = ρ , e2 = eφ = (− sinφ, cosφ, 0) , (1.86b)

h3 =
∣∣∣∣ ∂r∂q3

∣∣∣∣ = 1 , e3 = ez = (0, 0, 1) . (1.86c)

Remarks.

• ei · ej = δij and e1 × e2 = e3, i.e. cylindrical polar coordinates are a right-handed orthogonal
curvilinear coordinate system.

• eρ and eφ are functions of position.

1.7.7 Volume and Surface Elements in Orthogonal Curvilinear Coordinates

Consider the volume element defined by the three
displacement vectors dri ≡ hi eidqi along each of the
three q-axes. For orthogonal curvilinear coordinate
systems this is

dV = dr1 × dr2 · dr3

= h1h2h3 dq1dq2dq3 e1 × e2 · e3

= h1h2h3 dq1dq2dq3 . (1.87)

Example: Spherical Polar Coordinates. For spherical polar coordinates we have from (1.84a), (1.84b),
(1.84c) and (1.87) that

dV = r2 sin θ drdθdφ . (1.88)

The volume of the sphere of radius a is therefore∫∫∫
V

dV =
∫ a

0

dr
∫ π

0

dθ
∫ 2π

0

dφ r2 sin θ =
4
3
πa3. (1.89)
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The surface element can also be deduced for arbi-
trary orthogonal curvilinear coordinates. First con-
sider the special case when dS || e3, then

dS = (h1dq1e1)× (h2dq2e2)
= h1h2 dq1dq2 e3 . (1.90)

In general

dS = sign(n̂ · e1)h2h3 dq2dq3 e1 + sign(n̂ · e2)h3h1 dq3dq1 e2 + sign(n̂ · e3)h1h2 dq1dq2 e3 . (1.91)
4/02
4/03
4/04

1.7.8 Gradient in Orthogonal Curvilinear Coordinates

First we recall from (1.10) that for Cartesian coordinates and infinitesimal displacements dψ = ∇ψ · dr.

Definition. For curvilinear orthogonal coordinates (for which the basis vectors are in general functions
of position), we define ∇ψ to be the vector such that for all dr

dψ = ∇ψ · dr . (1.92)

In order to determine the components of ∇ψ when ψ is viewed as a function of q rather than r, write

∇ψ =
∑

i

eiαi , (1.93)

then from (1.77a), (1.78), (1.80), (1.81) and (1.92)

dψ =
∑

i

eiαi ·
∑

j

hjejdqj =
∑
i,j

αi (hjdqj)ei · ej =
∑

i

αi (hidqi) . (1.94)

But according to the chain rule, an infinitesimal change dq to q will lead to the following infinitesimal
change in ψ ≡ ψ(q1, q2, q3)

dψ =
∑

i

∂ψ

∂qi
dqi

=
∑

i

(
1
hi

∂ψ

∂qi

)
(hidqi) . (1.95)

Hence, since (1.94) and (1.95) must hold for all dqi,

αi =
1
hi

∂ψ

∂qi
, (1.96)

and from (1.93)

∇ψ =
∑

i

ei

hi

∂ψ

∂qi
=
(

1
h1

∂ψ

∂q1
,

1
h2

∂ψ

∂q2
,

1
h3

∂ψ

∂q3

)
. (1.97)

Remark. Each term has dimensions ‘ψ/length’.

As before, we can consider ∇ψ to be the result of acting on ψ with the vector differential operator

Key
Result

∇ =
∑

i

ei
1
hi

∂

∂qi
. (1.98)
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1.7.9 Examples of Gradients

Cylindrical Polar Coordinates. In cylindrical polar coordinates, the gradient is given from (1.86a), (1.86b)
and (1.86c) to be

∇ = eρ
∂

∂ρ
+ eφ

1
ρ

∂

∂φ
+ ez

∂

∂z
. (1.99a)

Spherical Polar Coordinates. In spherical polar coordinates the gradient is given from (1.84a), (1.84b) and
(1.84c) to be

∇ = er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eφ

1
r sin θ

∂

∂φ
. (1.99b)

1.7.10 Divergence and Curl

We can now use (1.98) to compute ∇ · F and ∇ × F in orthogonal curvilinear coordinates. However,
first we need a preliminary result which is complementary to (1.79). Using (1.98), and the fact that (see
(0.8b))

∂qi
∂qj

= δij , i.e. that
(
∂q1
∂q1

)
q2,q3

= 1 ,
(
∂q1
∂q2

)
q1,q3

= 0 , etc., (1.100a)

we can show that

∇qi =
∑

j

ej
1
hj

∂qi
∂qj

=
∑

j

ej

hj
δij =

ei

hi
, i.e. that ei = hi∇qi . (1.100b)

We also recall that the ei form an orthonormal right-handed basis; thus e1 = e2 × e3 (and cyclic
permutations). Hence from (1.100b)

e1 = h2∇q2 × h3∇q3 , and cyclic permutations. (1.100c)

Divergence. We have with a little bit of inspired rearrangement, and remembering to differentiate the ei

because they are position dependent:

∇ · F = ∇ ·

(∑
i

Fiei

)

= ∇ ·
(

(h2h3F1)
(

e1

h2h3

))
+ cyclic permutations

=
e1

h2h3
·∇(h2h3F1) + h2h3F1∇ ·

(
e1

h2h3

)
+ cyclic permutations using (1.41a)

=
e1

h2h3
·
∑

j

ej

(
1
hj

∂

∂qj
(h2h3F1)

)
+ h2h3F1∇ · (∇q2 ×∇q3)

+ cyclic permutations . using (1.98) & (1.100c)

Recall from (1.80) that e1 · ej = δ1j , and from example (1.47), with p = q2 and q = q3, that

∇ · (∇q2 ×∇q3) = 0 .

It follows that

Key
Result

∇ · F =
1

h1h2h3

(
∂

∂q1
(h2h3F1) +

∂

∂q2
(h3h1F2) +

∂

∂q3
(h1h2F3)

)
. (1.101)

Cylindrical Polar Coordinates. From (1.86a), (1.86b), (1.86c) and (1.101)

divF =
1
ρ

∂

∂ρ
(ρFρ) +

1
ρ

∂Fφ

∂φ
+
∂Fz

∂z
. (1.102a)
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Spherical Polar Coordinates. From (1.84a), (1.84b), (1.84c) and (1.101)

divF =
1
r2

∂

∂r

(
r2Fr

)
+

1
r sin θ

∂

∂θ
(sin θ Fθ) +

1
r sin θ

∂Fφ

∂φ
. (1.102b)

4/01

Curl. With a little bit of inspired rearrangement we have that

∇× F = ∇×

(∑
i

Fiei

)

=
∑

i

∇×
(

(hiFi)
(

ei

hi

))
=
∑

i

∇(hiFi)×
ei

hi
+
∑

i

hiFi (∇×∇qi) using (1.41b) & (1.100b)

=
∑

i

∑
j

(
1

hihj

∂(hiFi)
∂qj

)
ej × ei . using (1.42) & (1.98)

But e1 × e2 = e3 and cyclic permutations, and ek × ek = 0, hence

∇× F =
e1

h2h3

(
∂(h3F3)
∂q2

− ∂(h2F2)
∂q3

)
+

e2

h3h1

(
∂(h1F1)
∂q3

− ∂(h3F3)
∂q1

)
+

e3

h1h2

(
∂(h2F2)
∂q1

− ∂(h1F1)
∂q2

)
. (1.103a)

All three components of the curl can be written in the concise form

Key
Result∇× F =

1
h1h2h3

∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂
∂q1

∂
∂q2

∂
∂q3

h1F1 h2F2 h3F3

∣∣∣∣∣∣∣ . (1.103b)

Cylindrical Polar Coordinates. From (1.86a), (1.86b), (1.86c) and (1.103b)

curlF =
1
ρ

∣∣∣∣∣∣∣
eρ ρ eφ ez

∂ρ ∂φ ∂z

Fρ ρFφ Fz

∣∣∣∣∣∣∣ (1.104a)

=
(

1
ρ

∂Fz

∂φ
− ∂Fφ

∂z
,
∂Fρ

∂z
− ∂Fz

∂ρ
,
1
ρ

∂(ρFφ)
∂ρ

− 1
ρ

∂Fρ

∂φ

)
. (1.104b)

Spherical Polar Coordinates. From (1.84a), (1.84b), (1.84c) and (1.103b)

curlF=
1

r2 sin θ

∣∣∣∣∣∣∣
er reθ r sin θeφ

∂r ∂θ ∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣∣ (1.105a)

=
(

1
r sin θ

(
∂(sin θ Fφ)

∂θ
− ∂Fθ

∂φ

)
,

1
r sin θ

∂Fr

∂φ
− 1
r

∂(rFφ)
∂r

,
1
r

∂(rFθ)
∂r

− 1
r

∂Fr

∂θ

)
. (1.105b)

Remarks.

1. Each term in a divergence and curl has dimensions ‘F/length’.

2. The above formulae can also be derived in a more physical manner using the divergence theorem
and Stokes’ theorem respectively.
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1.7.11 Laplacian in Orthogonal Curvilinear Coordinates

Suppose we substitute F = ∇ψ into formula (1.101) for the divergence. Then since from (1.97)

Fi =
1
hi

∂ψ

∂qi
,

we have that

∇2ψ ≡ ∇ ·∇ψ =
1

h1h2h3

(
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂ψ

∂q3

))
. (1.106)

We thereby deduce that in a general orthogonal curvilinear coordinate system

∇2 =
1

h1h2h3

(
∂

∂q1

(
h2h3

h1

∂

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂

∂q3

))
. (1.107)

Cylindrical Polar Coordinates. From (1.86a), (1.86b), (1.86c) and (1.107)

∇2ψ =
1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2
. (1.108a)

Spherical Polar Coordinates. From (1.84a), (1.84b), (1.84c) and (1.107)

∇2ψ =
1
r2

∂

∂r

(
r2
∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
, (1.108b)

=
1
r

∂2

∂r2
(rψ) +

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
. (1.108c)

Remark. We have found here only the form of ∇2 as a differential operator on scalar fields. As noted
earlier, the action of the Laplacian on a vector field F is most easily defined using the vector
identity

∇2F = ∇(∇ · F)−∇× (∇× F) . (1.109)

Alternatively ∇2F can be evaluated by recalling that

∇2F = ∇2(F1e1 + F2e2 + F3e3) ,

and remembering (a) that the derivatives implied by the Laplacian act on the unit vectors too, and
(b) that because the unit vectors are generally functions of position (∇2F)i 6= ∇2Fi (the exception
being Cartesian coordinates).

1.7.12 Further Examples

Evaluate ∇ · r, ∇× r, and ∇2
(

1
r

)
in spherical polar coordinates, where r = r er. From (1.102b)

∇ · r =
1
r2

∂

∂r

(
r2 · r

)
= 3 , as in (1.37).

From (1.105b)

∇× r =
(

0 ,
1

r sin θ
∂r

∂φ
,−1

r

∂r

∂θ

)
= (0, 0, 0) , as in (1.38).

From (1.108c) for r 6= 0

∇2

(
1
r

)
=

1
r

∂2

∂r2

(
r

(
1
r

))
= 0 , as in (1.53) with n = −1. (1.110)
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1.7.13 Aide Memoire

Orthogonal Curvilinear Coordinates.

∇ =
∑

i

ei
1
hi

∂

∂qi
.

divF =
1

h1h2h3

(
∂

∂q1
(h2h3F1) +

∂

∂q2
(h3h1F2) +

∂

∂q3
(h1h2F3)

)
.

curlF =
1

h1h2h3

∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂
∂q1

∂
∂q2

∂
∂q3

h1F1 h2F2 h3F3

∣∣∣∣∣∣∣ .
∇2ψ =

1
h1h2h3

(
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂ψ

∂q3

))
.

Cylindrical Polar Coordinates: q1 = ρ, h1 = 1, q2 = φ, h2 = ρ, q3 = z, h3 = 1.

∇ = eρ
∂

∂ρ
+ eφ

1
ρ

∂

∂φ
+ ez

∂

∂z
.

divF =
1
ρ

∂

∂ρ
(ρFρ) +

1
ρ

∂Fφ

∂φ
+
∂Fz

∂z
.

curlF =
1
ρ

∣∣∣∣∣∣∣
eρ ρ eφ ez

∂ρ ∂φ ∂z

Fρ ρFφ Fz

∣∣∣∣∣∣∣
=
(

1
ρ

∂Fz

∂φ
− ∂Fφ

∂z
,
∂Fρ

∂z
− ∂Fz

∂ρ
,
1
ρ

∂(ρFφ)
∂ρ

− 1
ρ

∂Fρ

∂φ

)
.

∇2ψ =
1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2
.

Spherical Polar Coordinates: q1 = r, h1 = 1, q2 = θ, h2 = r, q3 = φ, h3 = r sin θ.

∇ = er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eφ

1
r sin θ

∂

∂φ
.

divF =
1
r2

∂

∂r

(
r2Fr

)
+

1
r sin θ

∂

∂θ
(sin θ Fθ) +

1
r sin θ

∂Fφ

∂φ
.

curlF =
1

r2 sin θ

∣∣∣∣∣∣∣
er reθ r sin θeφ

∂r ∂θ ∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣∣
=
(

1
r sin θ

(
∂(sin θ Fφ)

∂θ
− ∂Fθ

∂φ

)
,

1
r sin θ

∂Fr

∂φ
− 1
r

∂(rFφ)
∂r

,
1
r

∂(rFθ)
∂r

− 1
r

∂Fr

∂θ

)
.

∇2ψ =
1
r2

∂

∂r

(
r2
∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
.
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2 Partial Differential Equations

2.0 Why Study This?

Many (most?, all?) scientific phenomena can be described by mathematical equations. An important
sub-class of these equations is that of partial differential equations. If we can solve and/or understand
such equations (and note that this is not always possible for a given equation), then this should help us
understand the science.

2.1 Nomenclature

Ordinary differential equations (ODEs) are equations relating one or more unknown functions of a vari-
able with one or more of the functions’ derivatives, e.g. the second-order equation for the motion
of a particle of mass m acted on by a force F

m
d2r(t)
dt2

= F , (2.1a)

or equivalently the two first-order equations

ṙ(t) = v(t) and mv̇(t) = F(t) . (2.1b)

The unknown functions are referred to as the dependent variables, and the quantity that they
depend on is known as the independent variable.

Partial differential equations (PDEs) are equations relating one or more unknown functions of two or
more variables with one or more of the functions’ partial derivatives with respect to those variables,
e.g. Schrödinger’s equation (1.50b) for the quantum mechanical wave function ψ(x, y, z, t) of a non-
relativistic particle:

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ + V (r)ψ = i~

∂ψ

∂t
. (2.2)

5/02
Linearity. If the system of differential equations is of the first degree in the dependent variables, then

the system is said to be linear. Hence the above examples are linear equations. However Euler’s
equation for an inviscid fluid,

ρ

(
∂u
∂t

+ (u ·∇)u
)

= −∇p , (2.3)

where u is the velocity, ρ is the density and p is the pressure, is nonlinear in u.

Order. The power of the highest derivative determines the order of the differential equation. Hence (2.1a)
and (2.2) are second-order equations, while each equation in (2.1b) is a first-order equation. 5/03

5/04

2.1.1 Linear Second-Order Partial Differential Equations

The most general linear second-order partial differential equation in two independent variables is

a(x, y)
∂2ψ

∂x2
+ b(x, y)

∂2ψ

∂x∂y
+ c(x, y)

∂2ψ

∂y2
+ d(x, y)

∂ψ

∂x
+ e(x, y)

∂ψ

∂y
+ f(x, y)ψ = g(x, y) . (2.4)

We will concentrate on examples where the coefficients, a(x, y), etc. are constants, and where there are
other simplifying assumptions. However, we will not necessarily restrict ourselves to two independent
variables (e.g. Schrödinger’s equation (2.2) has four independent variables).
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2.2 Physical Examples and Applications

2.2.1 Waves on a Violin String

Consider small displacements on a stretched elastic string of
density ρ per unit length (when not displaced). Assume that
all displacements y(x, t) are vertical (this is a bit of a cheat),
and resolve horizontally and vertically to obtain respectively

T2 cos θ2 = T1 cos θ1 , (2.5a)

(ρdx)
∂2y

∂t2
= T2 sin θ2 − T1 sin θ1

= T2 cos θ2 (tan θ2 − tan θ1) . (2.5b)

In the light of (2.5a) let
T = Tj cos θj (j = 1, 2) , (2.6a)

and observe that
tan θ =

∂y

∂x
. (2.6b)

Then from (2.5b) it follows after use of Taylor’s theorem that

ρdx
∂2y

∂t2
= T (tan θ2 − tan θ1)

= T

(
∂

∂x
y(x+ dx, t)− ∂

∂x
y(x, t)

)
= T

∂2y

∂x2
dx+ . . . , (2.7)

and hence, in the infinitesimal limit, that

∂2y

∂t2
=
T

ρ

∂2y

∂x2
. (2.8)

This is the wave equation with wavespeed c =
√

T
ρ . In general the one-dimensional wave equation is

∂2y

∂t2
= c2

∂2y

∂x2
. (2.9)

2.2.2 Electromagnetic Waves

The theory of electromagnetism is based on Maxwell’s equations. These relate the electric field E, the
magnetic field B, the charge density ρ and the current density J:

∇ ·E =
ρ

ε0
, (2.10a)

∇×E = −∂B
∂t

, (2.10b)

∇×B = µ0J +
1
c2
∂E
∂t

, (2.10c)

∇ ·B = 0 , (2.10d)

where ε0 is the dielectric constant, µ0 is the magnetic permeability, and c2 = (µ0ε0)−1 is the speed of
light. If there is no charge or current (i.e. ρ = 0 and J = 0), then from (2.10a), (2.10b), (2.10c) and the
vector identity (1.51a):

1
c2
∂2E
∂t2

= ∇× ∂B
∂t

using (2.10c) with J = 0

= −∇× (∇×E) using (2.10b)

= ∇2E−∇ (∇ ·E) using identity (1.51a)

= ∇2E . using (2.10a) with ρ = 0 (2.11)
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We have therefore recovered the three-dimensional wave equation (cf. (2.9))

∂2E
∂t2

= c2
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
E . (2.12)

Remark. The pressure perturbation of a sound waves satisfies the scalar equivalent of this equation (but
with c equal to the speed of sound rather than that of light).

2.2.3 Electrostatic Fields

Suppose instead a steady electric field is generated by a known charge density ρ. Then from (2.10b)

∇×E = 0 ,

which implies from (1.45) that there exists an electric potential ϕ such that

E = −∇ϕ . (2.13)

It then follows from the first of Maxwell’s equations, (2.10a), that ϕ satisfies Poisson’s equation

∇2ϕ = − ρ

ε0
, (2.14a)

i.e. (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ϕ = − ρ

ε0
. (2.14b)

2.2.4 Gravitational Fields

A Newtonian gravitational field g satisfies

∇ · g = −4πGρ , (2.15a)

and
∇× g = 0 , (2.15b)

where G is the gravitational constant and ρ is mass density. From the latter equation and (1.45) it follows
that there exists a gravitational potential ϕ such that

g = −∇ϕ . (2.16)

Thence from (2.15a) we deduce that the gravitational potential satisfies Poisson’s equation

∇2ϕ = 4πGρ . (2.17)

Remark. Electrostatic and gravitational fields are similar! 5/01

2.2.5 Diffusion of a Passive Tracer

Suppose we want describe how an inert chemical diffuses through a solid or stationary fluid.13

Denote the mass concentration of the dissolved
chemical per unit volume by C(r, t), and the ma-
terial flux vector of the chemical by q(r, t). Then
the amount of chemical crossing a small surface dS
in time δt is

local flux = (q · dS) δt .

13 Reacting chemicals and moving fluids are slightly more tricky.
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Hence the flux of chemical out of a closed surface S enclosing a volume V in time δt is

surface flux =

∫∫
S

q · dS

 δt . (2.18)

Let Q(r, t) denote any chemical mass source per unit time per unit volume of the media. Then if the
change of chemical within the volume is to be equal to the flux of the chemical out of the surface in
time δt ∫∫

S

q · dS

 δt = −

 d
dt

∫∫∫
V

C dV

 δt+

∫∫∫
V

QdV

 δt . (2.19a)

Hence using the divergence theorem (1.57), and exchanging the order of differentiation and integration,∫∫∫
V

(
∇ · q +

∂C

∂t
−Q

)
dV = 0 . (2.19b)

But this is true for any volume, and so

∂C

∂t
= −∇ · q +Q . (2.20)

The simplest empirical law relating concentration flux to concentration gradient is Fick’s law

q = −D∇C , (2.21)

where D is the diffusion coefficient; the negative sign is necessary if chemical is to flow from high to low
concentrations. If D is constant then the partial differential equation governing the concentration is

∂C

∂t
= D∇2C +Q . (2.22)

Special Cases.

Diffusion Equation. If there is no chemical source then Q = 0, and the governing equation becomes the
diffusion equation

∂C

∂t
= D∇2C . (2.23)

Poisson’s Equation. If the system has reached a steady state (i.e. ∂t ≡ 0), then with f(r) = Q(r)/D the
governing equation is Poisson’s equation

∇2C = −f . (2.24)

Laplace’s Equation. If the system has reached a steady state and there are no chemical sources then the
concentration is governed by Laplace’s equation

∇2C = 0 . (2.25)

2.2.6 Heat Flow

What governs the flow of heat in a saucepan, an engine block,
the earth’s core, etc.? Can we write down an equation?

Let q(r, t) denote the flux vector for heat flow. Then the
energy in the form of heat (molecular vibrations) flowing out
of a closed surface S enclosing a volume V in time δt is again
(2.18). Also, let

E(r, t) denote the internal energy per unit mass of the solid,
Q(r, t) denote any heat source per unit time per unit volume of the solid,
ρ(r, t) denote the mass density of the solid (assumed constant here).
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The flow of heat in/out of S must balance the change in internal energy and the heat source over, say,
a time δt (cf. (2.19a))∫∫

S

q · dS

 δt = −

 d
dt

∫∫∫
V

ρE dV

 δt+

∫∫∫
V

QdV

 δt .

For ‘slow’ changes at constant pressure (1st and 2nd law of thermodynamics)

E(r, t) = cpθ(r, t) , (2.26)

where θ is the temperature and cp is the specific heat (assumed constant here). Hence using the divergence
theorem (1.57), and exchanging the order of differentiation and integration (cf. (2.19b)),∫∫∫

V

(
∇ · q + ρcp

∂θ

∂t
−Q

)
dV = 0 .

But this is true for any volume, hence

ρcp
∂θ

∂t
= −∇ · q +Q . (2.27)

Experience tells us heat flows from hot to cold. The simplest empirical law relating heat flow to temper-
ature gradient is Fourier’s law (cf. Fick’s law (2.21))

q = −k∇θ , (2.28)

where k is the heat conductivity. If k is constant then the partial differential equation governing the
temperature is (cf. (2.22))

∂θ

∂t
= ν∇2θ +

Q

ρcp
(2.29)

where ν = k/(ρcp) is the diffusivity (or coefficient of diffusion).

2.2.7 Other Equations

There are numerous other partial differential equations describing scientific, and non-scientific, phenom-
ena. One equation that you might have heard a lot about is the Black-Scholes equation for call option
pricing

∂w

∂t
= rw − rx

∂w

∂x
− 1

2v
2x2 ∂

2w

∂x2
, (2.30)

where w(x, t) is the price of the call option of the stock, x is the variable market price of the stock, t is
time, r is a fixed interest rate and v2 is the variance rate of the stock price!14

Also, despite the impression given above where all the equations except (2.3) are linear, many of the most
interesting scientific (and non-scientific) equations are nonlinear. For instance the nonlinear Schrödinger
equation

i
∂A

∂t
+
∂2A

∂x2
= A|A|2 ,

where i is the square root of -1, admits soliton solutions (which is one of the reasons that optical fibres
work).

14 It’s by no means clear to me what these terms mean, but http://www.physics.uci.edu/~silverma/bseqn/bs/bs.html
is one place to start!
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2.3 Separation of Variables

You may have already met the general idea of ‘separability’ when solving ordinary differential equations,
e.g. when you studied separable equations to the special differential equations that can be written in the
form

X(x)dx︸ ︷︷ ︸
function of x

= Y (y)dy︸ ︷︷ ︸
function of y

= constant .

Sometimes functions can we written in separable form. For instance,

f(x, y) = cosx exp y = X(x)Y (y) , where X = cosx and Y = exp y ,

is separable in Cartesian coordinates, while

g(x, y, z) =
1

(x2 + y2 + z2)
1
2

is not separable in Cartesian coordinates, but is separable in spherical polar coordinates since

g = R(r)Θ(θ)Φ(φ) where R = 1
r , Θ = 1 and Φ = 1 .

Solutions to partial differential equations can sometimes be found by seeking solutions that can be written
in separable form, e.g.

Time & 1D Cartesians: y(x, t) = X(x)T (t) , (2.31a)
2D Cartesians: ψ(x, y) = X(x)Y (y) , (2.31b)
3D Cartesians: ψ(x, y, z) = X(x)Y (y)Z(z) , (2.31c)

Cylindrical Polars: ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z) , (2.31d)
Spherical Polars: ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) . (2.31e)

However, we emphasise that not all solutions of partial differential equations can be written in this form.

2.4 The One Dimensional Wave Equation

2.4.1 Separable Solutions

Seek solutions y(x, t) to the one dimensional wave equation (2.9), i.e.

∂2y

∂t2
= c2

∂2y

∂x2
, (2.32a)

of the form
y(x, t) = X(x)T (t) . (2.32b)

On substituting (2.32b) into (2.32a) we obtain

X T̈ = c2 T X ′′ ,

where a ˙ and a ′ denote differentiation by t and x respectively. After rearrangement we have that

1
c2
T̈ (t)
T (t)︸ ︷︷ ︸

function of t

=
X ′′(x)
X(x)︸ ︷︷ ︸

function of x

= λ , (2.33a)

where λ is a constant (the only function of t that equals a function of x). We have therefore split the
PDE into two ODEs:

T̈ − c2λT = 0 and X ′′ − λX = 0 . (2.33b)

There are three cases to consider.
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λ = 0. In this case

T̈ (t) = X ′′(x) = 0 ⇒ T = A0 +B0t and X = C0 +D0x ,

where A0, B0, C0 and D0 are constants, i.e.

y = (A0 +B0t)(C0 +D0x) . (2.34a)

λ = σ2 > 0. In this case
T̈ − σ2c2T = 0 and X ′′ − σ2X = 0 .

Hence
T = Aσeσct +Bσe−σct and X = Cσ coshσx+Dσ sinhσx ,

where Aσ, Bσ, Cσ and Dσ are constants, i.e.

y =
(
Aσeσct +Bσe−σct

)
(Cσ coshσx+Dσ sinhσx) . (2.34b)

Alternatively we could express this as

y =
(
Ãσ coshσct+ B̃σ sinhσct

)(
C̃σeσx + D̃σe−σx

)
, or as . . .

where Ãσ, B̃σ, C̃σ and D̃σ are constants. 6/02
6/03
6/04λ = −k2 < 0. In this case

T̈ + k2c2T = 0 and X ′′ + k2X = 0 .

Hence
T = Ak cos kct+Bk sin kct and X = Ck cos kx+Dk sin kx ,

where Ak, Bk, Ck and Dk are constants, i.e.

y = (Ak cos kct+Bk sin kct) (Ck cos kx+Dk sin kx) . (2.34c)

Remark. Without loss of generality we could also impose a normalisation condition, say, C2
j +D2

j = 1.

2.4.2 Boundary and Initial Conditions

Solutions (2.34a), (2.34b) and (2.34c) represent three families of solutions.15 Although they are based
on a special assumption, we shall see that because the wave equation is linear they can represent a wide
range of solutions by means of superposition. However, before going further it is helpful to remember
that when solving a physical problem boundary and initial conditions are also needed.

Boundary Conditions. Suppose that the string considered in § 2.2.1 has ends at x = 0 and x = L that
are fixed; appropriate boundary conditions are then

y(0, t) = 0 and y(L, t) = 0 . (2.35)

It is no coincidence that there are boundary conditions at two values of x and the highest derivative
in x is second order.

Initial Conditions. Suppose also that the initial displacement
and initial velocity of the string are known; appropriate
initial conditions are then

y(x, 0) = d(x) and
∂y

∂t
(x, 0) = v(x) . (2.36)

Again it is no coincidence that we need two initial condi-
tions and the highest derivative in t is second order.

We shall see that the boundary conditions restrict the choice of λ.

15 Or arguably one family if you wish to nit pick in the complex plane.
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2.4.3 Solution

Consider the cases λ = 0, λ < 0 and λ > 0 in turn. These constitute an uncountably infinite number of
solutions; our aim is to end up with a countably infinite number of solutions by elimination.

λ = 0. If the homogeneous, i.e. zero, boundary conditions (2.35) are to be satisfied for all time, then in
(2.34a) we must have that C0 = D0 = 0.

λ > 0. Again if the boundary conditions (2.35) are to be satisfied for all time, then in (2.34b) we must
have that Cσ = Dσ = 0.

λ < 0. Applying the boundary conditions (2.35) to (2.34c) yields

Ck = 0 and Dk sin kL = 0 . (2.37)

If Dk = 0 then the entire solution is trivial (i.e. zero), so the only useful solution has

sin kL = 0 ⇒ k =
nπ

L
, (2.38)

where n is a non-zero integer. These special values of k are eigenvalues and the corresponding
eigenfunctions, or normal modes, are

Xn = Dnπ
L

sin
nπx

L
. (2.39)

Hence, from (2.34c), solutions to (2.9) that satisfy the boundary condition (2.35) are

yn(x, t) =
(
An cos

nπct

L
+ Bn sin

nπct

L

)
sin

nπx

L
, (2.40)

where we have written An for Anπ
L
Dnπ

L
and Bn for Bnπ

L
Dnπ

L
. Since (2.9) is linear we can superimpose

(i.e. add) solutions to get the general solution

y(x, t) =
∞∑

n=1

(
An cos

nπct

L
+ Bn sin

nπct

L

)
sin

nπx

L
, (2.41)

where there is no need to run the sum from −∞ to ∞ because of the symmetry properties of sin and
cos. We note that when the solution is viewed as a function of x at fixed t, or as a function of t at fixed
x, then it has the form of a Fourier series. 6/01

The solution (2.41) satisfies the boundary conditions (2.35) by
construction. The only thing left to do is to satisfy the initial
conditions (2.36), i.e. we require that

y(x, 0) = d(x) =
∞∑

n=1

An sin
nπx

L
, (2.42a)

∂y

∂t
(x, 0) = v(x) =

∞∑
n=1

Bn
nπc

L
sin

nπx

L
. (2.42b)

An and Bn can now be found using the orthogonality relations for sin (see (0.18a)), i.e.∫ L

0

sin
nπx

L
sin

mπx

L
dx =

L

2
δnm . (2.43)

Hence for an integer m > 0

2
L

∫ L

0

d(x) sin
mπx

L
dx =

2
L

∫ L

0

( ∞∑
n=1

An sin
nπx

L

)
sin

mπx

L
dx

=
∞∑

n=1

2An

L

∫ L

0

sin
nπx

L
sin

mπx

L
dx

=
∞∑

n=1

2An

L

L

2
δnm using (2.43)

= Am , using (0.11b) (2.44a)
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or alternatively invoke standard results for the coefficients of Fourier series. Similarly

Bm =
2

mπc

∫ L

0

v(x) sin
mπx

L
dx . (2.44b)

2.4.4 Unlectured: Oscillation Energy

A vibrating string has both potential energy (because of the stretching of the string) and kinetic energy
(because of the motion of the string). For small displacements the potential energy is approximately

PE =
∫ L

0

1
2Ty

′2 dx =
∫ L

0

1
2ρ (cy′)2 dx , (2.45a)

since c2 = Tρ−1, and the kinetic energy is approximately

KE =
∫ L

0

1
2ρẏ

2 dx . (2.45b)

Hence from (2.41) and (2.43)

PE = 1
2ρc

2

∫ L

0

( ∞∑
n=1

(
An cos

nπct

L
+ Bn sin

nπct

L

)
nπ

L
cos

nπx

L

)
×( ∞∑

m=1

(
Am cos

mπct

L
+ Bm sin

mπct

L

)
mπ

L
cos

mπx

L

)
dx

= 1
2ρc

2
∑
m,n

(
An cos

nπct

L
+ Bn sin

nπct

L

)(
Am cos

mπct

L
+ Bm sin

mπct

L

)
mnπ2

L2

L

2
δmn

=
ρπ2c2

4L

∞∑
n=1

n2

(
An cos

nπct

L
+ Bn sin

nπct

L

)2

, (2.46a)

KE = 1
2ρ

∫ L

0

( ∞∑
n=1

nπc

L

(
−An sin

nπct

L
+ Bn cos

nπct

L

)
sin

nπx

L

)
×( ∞∑

m=1

nπc

L

(
−Am sin

mπct

L
+ Bm cos

mπct

L

)
sin

mπx

L

)
dx

=
ρπ2c2

4L

∞∑
n=1

n2

(
−An sin

nπct

L
+ Bn cos

nπct

L

)2

. (2.46b)

It follows that the total energy is given by

E = PE +KE =
∞∑

n=1

ρπ2c2n2

4L
(
A2

n + B2
n

)
=

∑
normal modes

(energy in mode) . (2.46c)

Remark. The energy is conserved in time (since there is no dissipation). Moreover there is no transfer of
energy between modes.

Exercise. Show, by averaging the PE and KE over an oscillation period, that there is equi-partition of
energy over an oscillation cycle.

2.5 Poisson’s Equation

Suppose we are interested in obtaining solutions to Poisson’s equation

∇2θ = −f , (2.47a)
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where, say, θ is a steady temperature distribution and f = Q/(ρcpν2) is a scaled heat source (see (2.29)).
For simplicity let the world be two-dimensional, then (2.47a) becomes(

∂2

∂x2
+

∂2

∂y2

)
θ = −f . (2.47b)

Suppose we seek a separable solution as before, i.e. θ(x, y) = X(x)Y (y). Then on substituting into (2.47b)
we obtain

X ′′

X
= −Y

′′

Y
− f

XY
. (2.48)

It follows that unless we are very fortunate, and f(x, y) has a particular form (e.g. f = 0), it does not
look like we will be able to find separable solutions.

In order to make progress the trick is to first find a[ny] particular solution, θs, to (2.47b) (cf. finding
a particular solution when solving constant coefficient ODEs last year). The function Θ = θ − θs then
satisfies Laplace’s equation

∇2Θ = 0 . (2.49)

This is just Poisson’s equation with f = 0, for which we have just noted that separable solutions exist.
To obtain the full solution we need to add these [countably infinite] separable solutions to our particular
solution (cf. adding complementary functions to a particular solution when solving constant coefficient
ODEs last year).

2.5.1 A Particular Solution

We will illustrate the method by considering the par-
ticular example where the heating f is uniform, f = 1
wlog (since the equation is linear), in a semi-infinite rod,
0 6 x, of unit width, 0 6 y 6 1.

In order to find a particular solution suppose for the
moment that the rod is infinite (or alternatively consider
the solution for x � 1 for a semi-infinite rod, when the
rod might look ‘infinite’ from a local viewpoint).

Then we might expect the particular solution for the temperature θs to be independent of x, i.e.
θs ≡ θs(y). Poisson’s equation (2.47b) then reduces to

d2θs

dy2
= −1 , (2.50a)

which has solution
θs = a0 + b0y − 1

2y
2 , (2.50b)

where a0 and b0 are constants.

2.5.2 Boundary Conditions

For the rod problem, experience suggests that we need to specify one of the following at all points on
the boundary of the rod:

• the temperature (a Dirichlet condition), i.e.

θ = g(r) , (2.51a)

where g(r) is a known function;

• the scaled heat flux (a Neumann condition), i.e.

∂θ

∂n
≡ n̂ ·∇θ = h(r) , (2.51b)

where h(r) is a known function;
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• a mixed condition, i.e.

α(r)
∂θ

∂n
+ β(r)θ = d(r) , (2.51c)

where α(r), β(r) and d(r) are known functions, and α(r) and β(r) are not simultaneously zero.

For our rod let us consider the boundary conditions

θ = 0 on x = 0 (0 6 y 6 1), y = 0 (0 6 x <∞) and y = 1 (0 6 x <∞), and
∂θ

∂x
→ 0 as x→∞ . (2.52)

For these conditions it is appropriate to take a0 = 0 and b0 = 1
2 in (2.50b) so that

θs = 1
2y(1− y) > 0 . (2.53)

Let Θ = θ − θs, then Θ satisfies Laplace’s equation (2.49) and, from (2.52) and (2.53), the boundary
conditions

Θ = − 1
2y(1− y) on x = 0 , Θ = 0 on y = 0 and y = 1 , and

∂Θ
∂x

→ 0 as x→∞ . (2.54)

7/03

2.5.3 Separable Solutions

On writing Θ(x, y) = X(x)Y (y) and substituting into Laplace’s equation (2.49) it follows that (cf. (2.48))

X ′′(x)
X(x)︸ ︷︷ ︸

function of x

= −Y
′′(y)
Y (y)︸ ︷︷ ︸

function of y

= λ , (2.55a)

so that
X ′′ − λX = 0 and Y ′′ + λY = 0 . (2.55b)

We can now consider each of the possibilities λ = 0, λ > 0 and λ < 0 in turn to obtain, cf. (2.34a), 7/02
7/04(2.34b) and (2.34c),

λ = 0.
Θ = (A0 +B0x)(C0 +D0y) . (2.56a)

λ = σ2 > 0.
Θ =

(
Aσeσx +Bσe−σx

)
(Cσ cosσy +Dσ sinσy) . (2.56b)

λ = −k2 < 0.
Θ = (Ak cos kx+Bk sin kx)

(
Ckeky +Dke−ky

)
. (2.56c)

The boundary conditions at y = 0 and y = 1 in (2.54) state that Θ(x, 0) = 0 and Θ(x, 1) = 0. This
implies (cf. the stretched string problem) that solutions proportional to sin(nπy) are appropriate; hence
we try λ = n2π2 where n is an integer. The eigenfunctions are thus

Θn =
(
Anenπx + Bne−nπx

)
sin(nπy) , (2.57)

where An and Bn are constants. However, if the boundary condition in (2.54) as x→∞ is to be satisfied
then An = 0. Hence the solution has the form

Θ =
∞∑

n=1

Bne−nπx sin(nπy) . (2.58)

The Bn are fixed by the first boundary condition in (2.54), i.e. we require that

− 1
2y(1− y) =

∞∑
n=1

Bn sin(nπy) . (2.59a)
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Using the orthogonality relations (2.43) it follows that

Bm = 2
(−1)m − 1
m3π3

. (2.59b)

and hence that

θ = 1
2y(1− y)−

∞∑
`=0

4
π3(2`+ 1)3

sin((2`+ 1)πy) e−(2`+1)πx , (2.60a)

or equivalently

θ =
∞∑

`=0

4
π3(2`+ 1)3

sin((2`+ 1)πy)
(
1− e−(2`+1)πx

)
. (2.60b)

2.6 The Diffusion Equation

2.6.1 Separable Solutions

Seek solutions C(x, t) to the one dimensional diffusion equation of the form

C(x, t) = X(x)T (t) . (2.61)

On substituting into the one dimensional version of (2.22),

∂C

∂t
= D

∂2C

∂x2
,

we obtain
X Ṫ = DT X ′′ .

After rearrangement we have that

1
D

Ṫ (t)
T (t)︸ ︷︷ ︸

function of t

=
X ′′(x)
X(x)︸ ︷︷ ︸

function of x

= λ , (2.62a)

where λ is again a constant. We have therefore split the PDE into two ODEs:

Ṫ −DλT = 0 and X ′′ − λX = 0 . (2.62b)

There are again three cases to consider.

λ = 0. In this case
Ṫ (t) = X ′′(x) = 0 ⇒ T = α0 and X = β0 + γ0x ,

where α0, β0 and γ0 are constants. Combining these results we obtain

C = α0(β0 + γ0x) ,

or
C = β0 + γ0x , (2.63a)

since, without loss of generality (wlog), we can take α0 = 1.

λ = σ2 > 0. In this case
Ṫ −Dσ2T = 0 and X ′′ − σ2X = 0 .

Hence
T = ασ exp(Dσ2t) and X = βσ coshσx+ γσ sinhσx ,

where ασ, βσ and γσ are constants. On taking ασ = 1 wlog,

C = exp(Dσ2t) (βσ coshσx+ γσ sinhσx) . (2.63b)
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λ = −k2 < 0. In this case
Ṫ +Dk2T = 0 and X ′′ + k2X = 0 .

Hence
T = αk exp(−Dk2t) and X = βk cos kx+ γk sin kx ,

where αk, βk and γk are constants. On taking αk = 1 wlog,

C = exp(−Dk2t) (βk cos kx+ γk sin kx) . (2.63c)

2.6.2 Boundary and Initial Conditions

Consider the problem of a solvent occupying the region
between x = 0 and x = L. Suppose that at t = 0 there is
no chemical in the solvent, i.e. the initial condition is

C(x, 0) = 0 . (2.64a)

Note that here we specify one initial condition based on
the observation that the highest derivative in t in (2.22)
is first order.

Suppose also that for t > 0 the concentration of the chemical is maintained at C0 at x = 0, and is 0 at
x = L, i.e.

C(0, t) = C0 and C(L, t) = 0 for t > 0 . (2.64b)

Again it is no coincidence that there two boundary conditions and the highest derivative in x is second
order.

Remark. Equation (2.22) and conditions (2.64a) and (2.64b) are mathematically equivalent to a descrip-
tion of the temperature of a rod of length L which is initially at zero temperature before one of
the ends is raised instantaneously to a constant non-dimensional temperature of C0.

2.6.3 Solution

The trick here is to note that

• the inhomogeneous (i.e. non-zero) boundary condition at x = 0, i.e C(0, t) = C0, is steady, and

• the separable solutions (2.63b) and (2.63c) depend on time, while (2.63a) does not.

It therefore seems sensible to try and satisfy the the boundary conditions (2.64b) using the solution
(2.63a). If we call this part of the total solution C∞(x) then, with β0 = C0 and γ0 = −C0/L in (2.63a),

C∞(x) = C0

(
1− x

L

)
, (2.65)

which is just a linear variation in C from C0 at x = 0 to 0 at x = L. Write

C(x, t) = C∞(x) + C̃(x, t) , (2.66)

where C̃ is a sum of the separable time-dependent solutions (2.63b) and (2.63c). Then from the initial
condition (2.64a), the boundary conditions (2.64b), and the steady solution (2.65), it follows that

C̃(x, 0) = −C0

(
1− x

L

)
, (2.67a)

and
C̃(0, t) = 0 and C̃(L, t) = 0 for t > 0 . (2.67b)
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If the homogeneous boundary conditions (2.67b) are to be satisfied then, as for the wave equation,
separable solutions with λ > 0 are unacceptable, while λ = −k2 < 0 is only acceptable if

βk = 0 and γk sin kL = 0 . (2.68a)

It follows that if the solution is to be non trivial then

k =
nπ

L
. (2.68b)

The eigenfunctions corresponding to (2.68b) are

Xn = Γn sin
nπx

L
, (2.68c)

where Γn = γnπ
L

. Again, because (2.22) is a linear equation, we can add individual solutions to get the
general solution

C̃(x, t) =
∞∑

n=1

Γn exp
(
−n

2π2Dt

L2

)
sin

nπx

L
. (2.69)

The Γn are fixed by the initial condition (2.67b):

−C0

(
1− x

L

)
=

∞∑
n=1

Γn sin
nπx

L
. (2.70a)

Hence

Γm = −2C0

L

∫ L

0

(
1− x

L

)
sin

mπx

L
dx = −2C0

mπ
. (2.70b)

The solution is thus given by

C = C0

(
1− x

L

)
−

∞∑
n=1

2C0

nπ
exp

(
−n

2π2D t

L2

)
sin

nπx

L
. (2.71a)

or from using (2.70a)

C =
∞∑

n=1

2C0

nπ

(
1− exp

(
−n

2π2D t

L2

))
sin

nπx

L
. (2.71b)
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The solution (2.71b) with C0 = 1 and L = 1, plotted at
times t = 0.0001, t = 0.001, t = 0.01, t = 0.1 and t = 1
(curves from left to right respectively).

Paradox. sin nπx
L is not a separable solution of the dif-

fusion equation.

Remark. As t→∞ in (2.71a)

C → C0

(
1− x

L

)
= C∞(x) . (2.72)

Remark. Solution (2.71b) is odd and has period 2L. We
are in effect solving the 2L-periodic diffusion prob-
lem where C is initially zero. Then, at t = 0+, C
is raised to +1 at 2nL+ and lowered to −1 at
2nL− (for integer n), and kept zero everywhere
else.
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3 Fourier Transforms

3.0 Why Study This?

Fourier transforms, like Fourier series, tell you about the spectral (or harmonic) properties of functions.
As such they are useful diagnostic tools for experiments. Here we will primarily use Fourier transforms
to solve differential equations that model important aspects of science.

3.1 The Dirac Delta Function (a.k.a. Alchemy)

3.1.1 The Delta Function as the Limit of a Sequence

Consider the discontinuous function δε(x) defined for
ε > 0 by

δε(x) =


0 x < −ε
1
2ε −ε 6 x 6 ε

0 ε < x

. (3.1a)

Then for all values of ε, including the limit ε→ 0+,∫ ∞

−∞
δε(x) dx = 1 . (3.1b)

Further we note that for any differentiable function g(x) and constant ξ∫ ∞

−∞
δε(x− ξ)g′(x) dx =

∫ ξ+ε

ξ−ε

1
2ε
g′(x) dx

=
1
2ε

[
g(x)

]ξ+ε

ξ−ε

=
1
2ε

(g(ξ + ε)− g(ξ − ε)) .

In the limit ε→ 0+ we recover from using Taylor’s theorem and writing g′(x) = f(x)

lim
ε→0+

∫ ∞

−∞
δε(x− ξ)f(x) dx = lim

ε→0+

1
2ε
(
g(ξ) + εg′(ξ) + 1

2ε
2g′′(ξ) + . . .

−g(ξ) + εg′(ξ)− 1
2ε

2g′′(ξ) + . . .
)

= f(ξ) . (3.1c)

We will view the delta function, δ(x), as the limit as ε→ 0+ of δε(x), i.e.

δ(x) = lim
ε→0+

δε(x) . (3.2)

Applications. Delta functions are the mathematical way of modelling point objects/properties, e.g. point
charges, point forces, point sinks/sources.

3.1.2 Some Properties of the Delta Function

Taking (3.2) as our ‘definition’ of a delta function, we infer the following.

1. From (3.1a) we see that the delta function has an infinitely sharp peak of zero width, i.e.

δ(x) =
{
∞ x = 0
0 x 6= 0 . (3.3a)
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2. From (3.1b) it follows that the delta function has unit area, i.e.∫ β

−α

δ(x) dx = 1 for any α > 0 , β > 0 . (3.3b)

3. From (3.1c), and a sneaky interchange of the limit and the integration, we conclude that the delta
function can perform ‘surgical strikes’ on integrands picking out the value of the integrand at one
particular point, i.e. ∫ ∞

−∞
δ(x− ξ)f(x) dx = f(ξ) . (3.3c)

3.1.3 An Alternative (And Better) View

• The delta function δ(x) is not a function, but a distribution or generalised function.

• (3.3c) is not really a property of the delta function, but its definition. In other words δ(x) is the
generalised function such that for all ‘good’ functions f(x)16∫ ∞

−∞
δ(x− ξ)f(x) dx = f(ξ) . (3.4)

• Given that δ(x) is defined within an integrand as a linear operator, it should always be employed
in an integrand as a linear operator.17 8/02

8/04

3.1.4 The Delta Function as the Limit of Other Sequences

The sequence represented by (3.1a) is not unique in tending to the delta function in an appropriate limit;
there are many such sequences of well-defined functions.

For instance we could have alternatively defined δε(x) by

δε(x) =
1
2π

∫ ∞

−∞
eıkx−ε|k| dk (3.5a)

=
1
2π

(∫ 0

−∞
eıkx+εk dk +

∫ ∞

0

eıkx−εk dk
)

=
1
2π

(
1

ıx+ ε
− 1
ıx− ε

)
=

ε

π(x2 + ε2)
. (3.5b)

We note by substituting x = εy that (cf. (3.1b))∫ ∞

−∞

ε

π(x2 + ε2)
dx =

∫ ∞

−∞

1
π(y2 + 1)

dy =
1
π

[
arctan y

]∞
−∞

= 1 .

Also, by means of the substitution x = (ξ + εz) followed by an application of Taylor’s theorem, the 8/03

analogous result to (3.1c) follows, namely

lim
ε→0+

∫ ∞

−∞
δε(x− ξ)f(x) dx = lim

ε→0+

∫ ∞

−∞
δε(εz)f(ξ + εz) εdz

= lim
ε→0+

∫ ∞

−∞

1
π(z2 + 1)

(f(ξ) + εzf ′(ξ) + . . . ) dz

= f(ξ) .

16 By ‘good’ we mean, for instance, that f(x) is everywhere differentiable any number of times, and thatZ ∞
−∞

˛̨̨̨
dnf

dxn

˛̨̨̨2
dx < ∞ for all integers n > 0.

17 However we will not always be holier than thou: see (3.6).
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Hence, if we are willing to break the injunction that δ(x) should always be employed in an integrand as
a linear operator, we can infer from (3.5a) that

δ(x) =
1
2π

∫ ∞

−∞
eıkx dk . (3.6)

Another popular choice for δε(x) is the Gaussian of width ε

δε(x) =
1√

2πε2
exp

(
− x2

2ε2

)
. (3.7a)

The analogous result to (3.1b) follows by means of the substi-
tution x =

√
2 εy:∫ ∞

−∞
δε(x) dx =

1√
2πε2

∫ ∞

−∞
exp

(
− x2

2ε2

)
dx =

1√
π

∫ ∞

−∞
exp

(
−y2

)
dy = 1 . (3.7b)

The equivalent result to (3.1c) can also be recovered, as above, by the substitution x = (ξ +
√

2 εz)
followed by an application of Taylor’s theorem.

3.1.5 Further Properties of the Delta Function

The following properties hold for all the definitions of δε(x) above (i.e. (3.1a), (3.5a) and (3.7a)), and
thence for δ by the limiting process. Alternatively they can be deduced from (3.6).

1. δ(x) is symmetric. From (3.6) it follows using the substitution k = −` that

δ(−x) =
1
2π

∫ ∞

−∞
e−ıkx dk = − 1

2π

∫ −∞

∞
eı`x d` =

1
2π

∫ ∞

−∞
eı`x d` = δ(x) . (3.8a)

2. δ(x) is real. From (3.6) and (3.8a), with ∗ denoting a complex conjugate, it follows that

δ∗(x) =
1
2π

∫ ∞

−∞
e−ıkx dk = δ(−x) = δ(x) . (3.8b)

3.1.6 The Heaviside Step Function

The Heaviside step function, H(x), is defined for x 6= 0 by

H(x) =

{
0 x < 0
1 x > 0

. (3.9)

This function, which is sometimes written θ(x), is discontinuous
at x = 0:

lim
x→0−

H(x) = 0 6= 1 = lim
x→0+

H(x) .

There are various conventions for the value of the Heaviside step
function at x = 0, but it is not uncommon to take H(0) = 1

2 .

The Heaviside function is closely related to the Dirac delta function, since from (3.3a) and (3.3b)

H(x) =
∫ x

−∞
δ(ξ) dξ. (3.10a)

By analogy with the first fundamental theorem of calculus (0.1), this suggests that

H ′(x) = δ(x) . (3.10b)

Natural Sciences Tripos: IB Mathematical Methods I 41 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2004



Unlectured Remark. As a check on (3.10b) we see from integrating by parts that∫ ∞

−∞
H ′(x− ξ)f(x) dx =

[
H(x− ξ)f(x)

]∞
−∞

−
∫ ∞

−∞
H(x− ξ)f ′(x) dx

= f(∞)−
∫ ∞

ξ

f ′(x) dx

= f(∞)−
[
f(x)

]∞
ξ

= f(ξ) .

Hence from the definition the delta function (3.4) we may identify H ′(x) with δ(x). 8/01

3.1.7 The Derivative of the Delta Function

We can define the derivative of δ(x) by using (3.3a), (3.3c) and a formal integration by parts:∫ ∞

−∞
δ′(x− ξ)f(x) dx =

[
δ(x− ξ)f(x)

]∞
−∞

−
∫ ∞

−∞
δ(x− ξ)f ′(x) dx = −f ′(ξ). (3.11)

3.2 The Fourier Transform

3.2.1 Definition

Given a function f(x) such that ∫ ∞

−∞
|f(x)|dx < ∞ ,

we define its Fourier transform, f̃(k), by

f̃(k) =
1√
2π

∫ ∞

−∞
e−ıkxf(x) dx . (3.12)

Notation. Sometimes it will be clearer to denote the Fourier transform of a function f by F [f ] rather
than f̃ , i.e.

F [•] ≡ •̃ . (3.13)

Remark. There are differing normalisations of the Fourier transform. Hence you will encounter definitions
where the (2π)−

1
2 is either not present or replaced by (2π)−1, and other definitions where the −ıkx

is replaced by +ıkx.

Property. If the function f(x) is real the Fourier transform f̃(k) is not necessarily real. However if f is
both real and even, i.e. f∗(x) = f(x) and f(x) = f(−x) respectively, then by using these properties
and the substitution x = −y it follows that f̃ is real:

f̃∗(k) =
1√
2π

∫ ∞

−∞
eıkxf∗(x) dx from c.c. of (3.12)

=
1√
2π

∫ ∞

−∞
eıkxf(−x) dx since f∗(x) = f(−x)

=
1√
2π

∫ ∞

−∞
e−ıkyf(y) dy let x = −y

= f̃(k) . from (3.12) (3.14)

Similarly we can show that if f is both real and odd, then f̃ is purely imaginary, i.e. f̃∗(k) = −f̃(k).
Conversely it is possible to show using the Fourier inversion theorem (see below) that

• if both f and f̃ are real, then f is even;
• if f is real and f̃ is purely imaginary, then f is odd.
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3.2.2 Examples of Fourier Transforms

The Fourier Transform (FT) of e−b|x| (b > 0). First, from (3.5a) and (3.5b) we already have that

1
2π

∫ ∞

−∞
eıkx−ε|k| dk =

ε

π(x2 + ε2)
.

For what follows it is helpful to rewrite this result by making the transformations x→ `, k → x
and ε→ b to obtain ∫ ∞

−∞
eı`x−b|x| dx =

2b
`2 + b2

. (3.15)

We deduce from the definition of a Fourier transform, (3.12), and (3.15) with ` = −k, that

F [e−b|x|] =
1√
2π

∫ ∞

−∞
e−ıkx−b|x| dx

=
1√
2π

2b
k2 + b2

. (3.16)

The FTs of cos(ax) e−b|x| and sin(ax) e−b|x| (b > 0). Unlectured. From (3.12), the definition of cosine,
and (3.15) first with ` = a− k and then with ` = a+ k, it follows that

F [cos(ax) e−b|x|] =
1

2
√

2π

∫ ∞

−∞

(
eıax + e−ıax

)
e−ıkx−b|x| dx

=
b√
2π

(
1

(a− k)2 + b2
+

1
(a+ k)2 + b2

)
. (3.17a)

This is real, as it has to be since cos(ax) e−b|x| is even.

Similarly, from (3.12), the definition of sine, and (3.15) first with ` = a−k and then with ` = a+k,
it follows that

F [sin(ax) e−b|x|] =
1

2ı
√

2π

∫ ∞

−∞

(
eıax − e−ıax

)
e−ıkx−b|x| dx

=
−ıb√
2π

(
1

(a− k)2 + b2
− 1

(a+ k)2 + b2

)
. (3.17b)

This is purely imaginary, as it has to be since sin(ax) e−b|x| is odd.

The FT of a Gaussian. From the definition (3.12), the completion of a square, and the substitution
x = (εy − ıε2k),18 it follows that

F
[

1√
2πε2

exp
(
− x2

2ε2

)]
=

1
2πε

∫ ∞

−∞
exp

(
− x2

2ε2
− ıkx

)
dx

=
1

2πε

∫ ∞

−∞
exp

(
− 1

2

(x
ε

+ ıεk
)2

− 1
2ε

2k2

)
dx

=
1
2π

exp
(
− 1

2ε
2k2
) ∫ ∞

−∞
exp

(
− 1

2y
2
)

dy

=
1√
2π

exp
(
− 1

2ε
2k2
)
. (3.18)

Hence the FT of a Gaussian is a Gaussian.

The FT of the delta function. From definitions (3.4) and (3.12) it follows that

F [δ(x− a)] =
1√
2π

∫ ∞

−∞
δ(x− a)e−ıkx dx

=
1√
2π

e−ıka . (3.19a)

18 This is a little naughty since it takes us into the complex x-plane. However, it can be fixed up once you have done
Cauchy’s theorem.
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Hence the Fourier transform of δ(x) is 1/
√

2π. Recalling the description of a delta function as a
limit of a Gaussian, see (3.7a), we note that this result with a = 0 is consistent with (3.18) in the
limit ε→ 0+.

The FT of the step function. From (3.9) and (3.12) it follows that

F [H(x− a)] =
1√
2π

∫ ∞

−∞
H(x− a)e−ıkx dx

=
1√
2π

∫ ∞

a

e−ıkx dx

=
1√
2π

[
e−ıkx

−ık

]∞
a

We now have a problem, since what is limx→∞ e−ıkx? For the time being the simplest resolution is
(in the spirit of § 3.1.4) to find F [H(x− a)e−ε(x−a)] for ε > 0, and then let ε→ 0+. So

F [H(x− a)e−ε(x−a)] =
1√
2π

∫ ∞

−∞
H(x− a)e−ε(x−a)−ıkx dx

=
1√
2π

[
e−ε(x−a)−ıkx

−ε− ık

]∞
a

=
1√
2π

e−ıka

ε+ ık
. (3.19b)

On taking the limit ε→ 0 we have that

F [H(x− a)] =
e−ıka

√
2π ık

. (3.19c)

Remark. For future reference we observe from a comparison of (3.19a) and (3.19c) that

ıkF [H(x− a)] = F [δ(x− a)] . (3.19d)

9/02
9/04

3.2.3 The Fourier Inversion Theorem

Given a function f we can compute its Fourier transform f̃ from (3.12). For many functions the converse
is also true, i.e. given the Fourier transform f̃ of a function we can reconstruct the original function f . To
see this consider the following calculation (note the use of a dummy variable • to avoid an overabundance
of x)

1√
2π

∫ ∞

−∞
eıkxf̃(k) dk =

1√
2π

∫ ∞

−∞
eıkx

(
1√
2π

∫ ∞

−∞
e−ık•f(•) d•

)
dk from definition (3.12)

=
∫ ∞

−∞
d • f(•)

(
1
2π

∫ ∞

−∞
dk eık(x−•)

)
swap integration order

=
∫ ∞

−∞
d • f(•) δ(x− •) from definition (3.6)

= f(x) . from definition (3.4)

We thus have the result that if the Fourier transform of f(x) is defined by

f̃(k) =
1√
2π

∫ ∞

−∞
e−ıkxf(x) dx ≡ F [f ] , (3.20a)

then the inverse transform (note the change of sign in the exponent) acting on f̃(k) recovers f(x), i.e.

f(x) =
1√
2π

∫ ∞

−∞
eıkxf̃(k) dk ≡ I[f̃ ] . (3.20b)
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Note that
I [F [f ]] = f , and F

[
I
[
f̃
]]

= f̃ . (3.20c)

9/03

Example. Find the Fourier transform of (x2 + b2)−1.

Answer. From (3.16)

F
[
e−b|x|

]
(k) =

1√
2π

2b
k2 + b2

.

Hence from (3.20c) √
π

2b2
e−b|x| = I

[
1

k2 + b2

]
(x) ,

or, after applying the transformation x↔ k,

I
[

1
x2 + b2

]
(k) =

√
π

2b2
e−b|k| . (3.21a)

But, from the transformation x↔ k in (3.20b) and comparison with (3.20a), we see that

F [f(x)](k) = I[f(x)](−k) . (3.21b)

Hence, making the transformation k → −k in (3.21a), we find that

F
[

1
x2 + b2

]
(k) =

√
π

2b2
e−b|k| . (3.21c)

3.2.4 Properties of Fourier Transforms

A couple of useful properties of Fourier transforms follow from (3.20a) and (3.20b). In particular we
shall see that an important property of the Fourier transform is that it allows a simple representation
of derivatives of f(x). This has important consequences when we come to solve differential equations.
However, before we derive these properties we need to get Course A students upto speed.

Lemma. Suppose g(x, k) is a function of two variables, then for constants a and b

d
dx

∫ b

a

g(x, k) dk =
∫ b

a

∂g(x, k)
∂x

dk . (3.22)

Proof. Work from first principles, then

d
dx

∫ b

a

g(x, k) dk = lim
ε→0

1
ε

(∫ b

a

g(x+ ε, k) dk −
∫ b

a

g(x, k) dk

)

=
∫ b

a

lim
ε→0

(
g(x+ ε, k)− g(x, k)

ε

)
dk

=
∫ b

a

∂g(x, k)
∂x

dk .

Differentiation. If we differentiate the inverse Fourier transform (3.20b) with respect to x we obtain

df
dx

(x) =
1√
2π

∫ ∞

−∞
eıkx

(
ıkf̃(k)

)
dk = I

[
ıkf̃
]
. (3.23)

Now Fourier transform this equation to conclude from using (3.20c) that

F
[
df
dx

]
= F

[
I
[
ıkf̃
]]

= ıkf̃ . (3.24a)

In other words, each time we differentiate a function we multiply its Fourier transform by ık. Hence

F
[
d2f

dx2

]
= −k2f̃ and F

[
dnf

dxn

]
= (ık)nf̃ . (3.24b)
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Multiplication by x. This time we differentiate (3.20a) with respect to k to obtain

df̃
dk

(k) =
1√
2π

∫ ∞

−∞
e−ıkx (−ıxf(x)) dx .

Hence, after multiplying by ı, we deduce from (3.12) that (cf. (3.24a))

ı
df̃
dk

= F [xf(x)] . (3.25)

Translation. The Fourier transform of f(x− a) is given by

F [f(x− a)] =
1√
2π

∫ ∞

−∞
e−ıkxf(x− a) dx from (3.12)

=
1√
2π

∫ ∞

−∞
e−ık(y+a)f(y) dy x = y + a

= e−ıka 1√
2π

∫ ∞

−∞
e−ıkyf(y) dy rearrange

= e−ıkaF [f(x)] from (3.12). (3.26)

See (3.19a) and (3.19c) for a couple of examples that we have already done.

3.2.5 Parseval’s Theorem

Parseval’s theorem states that if f(x) is a complex function of x with Fourier transform f̃(k), then∫ ∞

−∞

∣∣f(x)
∣∣2 dx =

∫ ∞

−∞

∣∣f̃(k)
∣∣2 dk . (3.27)

‘Proof’.∫ ∞

−∞

∣∣f(x)
∣∣2 dx =

∫ ∞

−∞
dx f(x)f∗(x)

=
1
2π

∫ ∞

−∞
dx
[∫ ∞

−∞
dk eıkxf̃(k)

] [∫ ∞

−∞
d` e−ı`xf̃∗(`)

]
from (3.20b) & (3.20b)∗

=
∫ ∞

−∞
dk f̃(k)

∫ ∞

−∞
d` f̃∗(`)

(
1
2π

∫ ∞

−∞
dx eı(k−`)x

)
swap integration order

=
∫ ∞

−∞
dk f̃(k)

∫ ∞

−∞
d` f̃∗(`) δ(k − `) from (3.6)

=
∫ ∞

−∞
dk f̃(k)f̃∗(k) from (3.4) & (3.8a)

=
∫ ∞

−∞

∣∣f̃(k)
∣∣2 dk .

Unlectured Example. Find the Fourier transform of xe−|x| and use Parseval’s theorem to evaluate the
integral ∫ ∞

−∞

k2

(1 + k2)4
dk .

Answer. From (3.16) with b = 1

F
[
e−|x|

]
=

1√
2π

2
1 + k2

. (3.28a)

Next employ (3.25) to obtain

F
[
xe−|x|

]
= ı

∂

∂k
F
[
e−|x|

]
= −ı

√
2
π

2k
(1 + k2)2

. (3.28b)
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Then from Parseval’s theorem (3.27) and a couple of integrations by parts∫ ∞

−∞

k2

(1 + k2)4
dk =

π

8

∫ ∞

−∞
x2e−2|x| dx =

π

4

∫ ∞

0

x2e−2x dx =
π

16
. (3.28c)

9/01
An Application: Heisenberg’s Uncertainty Principle. Suppose that

ψ(x) =
1

(2π∆2
x)

1
4

exp
(
− x2

4∆2
x

)
(3.29)

is the [real] wave-function of a particle in quantum mechanics. Then, according to quantum me-
chanics,

|ψ2(x)| = 1√
2π∆2

x

exp
(
− x2

2∆2
x

)
, (3.30)

is the probability of finding the particle at position x, and ∆x is the root mean square deviation
in position. Note that since |ψ2| is the Gaussian of width ∆x,∫ ∞

−∞
|ψ2(x)|dx =

1√
2π∆2

x

∫ ∞

−∞
exp

(
− x2

2∆2
x

)
dx = 1 . (3.31)

Hence there is unit probability of finding the particle somewhere! The Fourier transform of ψ(x)
follows from (3.18) after the substitution ε =

√
2 ∆x and a multiplicative normalisation:

ψ̃(k) =
(

2∆2
x

π

) 1
4

exp
(
−∆2

xk
2
)

=
1

(2π∆2
k)

1
4

exp
(
− k2

4∆2
k

)
where ∆k =

1
2∆x

. (3.32)

Hence ψ̃2 is another Gaussian, this time with a root mean square deviation in wavenumber of ∆k.
In agreement with Parseval’s theorem ∫ ∞

−∞
|ψ̃(k)2|dk = 1 . (3.33)

We note that for the Gaussian ∆k∆x = 1
2 . More generally, one can show that for any (possibly

complex) wave-function ψ(x),
∆k∆x > 1

2 (3.34)
where ∆x and ∆k are, as for the Gaussian, the root mean square deviations of the probability
distributions |ψ(x)|2 and |ψ̃(k)|2, respectively. An important and well-known result follows from
(3.34), since in quantum mechanics the momentum is given by p = ~k, where ~ = h/2π and h is
Planck’s constant. Hence if we interpret ∆x = ∆x and ∆p = ~∆k to be the uncertainty in the
particle’s position and momentum respectively, then Heisenberg’s Uncertainty Principle follows
from (3.34), namely

∆p∆x > 1
2~ . (3.35)

A general property of Fourier transforms
that follows from (3.34) is that the smaller
the variation in the original function (i.e.
the smaller ∆x), the larger the variation in
the transform (i.e. the larger ∆k), and vice
versa. In more prosaic language

a sharp peak in x ⇔ a broad bulge in k,

and vice versa.

This property has many applications, for instance

• a short pulse of electromagnetic radiation must contain many frequencies;
• a long pulse of electromagnetic radiation (i.e. many wavelengths) is necessary in order to

obtain an approximately monochromatic signal.
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3.2.6 The Convolution Theorem

The convolution, f ∗ g, of a function f(x) with a function g(x) is defined by

(f ∗ g)(x) =
∫ ∞

−∞
dy f(y) g(x− y) . (3.36)

Property: ∗ is commutative. f ∗ g = g ∗ f since

(f ∗ g)(x) =
∫ ∞

−∞
dy f(y) g(x− y) from (3.36)

=
∫ −∞

∞
(−dz) f(x− z) g(z) z = x− y

=
∫ ∞

−∞
dy f(x− y) g(y) z → y

= (g ∗ f)(x) from (3.36).

The Fourier transform F [f ∗ g]. If the functions f and g have Fourier transforms F [f ] and F [g] respec-
tively, then

F [f ∗ g] =
√

2πF [f ]F [g] , (3.37)

since

F [f ∗ g] =
1√
2π

∫ ∞

−∞
dx e−ıkx

(∫ ∞

−∞
dy f(y) g(x− y)

)
from (3.12) & (3.36)

=
1√
2π

∫ ∞

−∞
dy f(y)

∫ ∞

−∞
dx e−ıkxg(x− y) swap integration order

=
1√
2π

∫ ∞

−∞
dy f(y)

∫ ∞

−∞
dz e−ık(z+y)g(z) x = z + y

=
1√
2π

∫ ∞

−∞
dy f(y) e−ıky

∫ ∞

−∞
dz e−ıkzg(z) rearrange

=
√

2πF [f ]F [g] from (3.12).

The Fourier transform F [fg]. Conversely the Fourier transform of the product fg is given by the con-
volution of the Fourier transforms of f and g divided by

√
2π, i.e.

F [fg] =
1√
2π

F [f ] ∗ F [g] , (3.38)

since

F [fg](k) =
1√
2π

∫ ∞

−∞
dx e−ıkxf(x)g(x) from (3.12)

=
1√
2π

∫ ∞

−∞
dx e−ıkx g(x)

(
1√
2π

∫ ∞

−∞
d` eı`xf̃(`)

)
from (3.20b) with k → `

=
1√
2π

∫ ∞

∞
d` f̃(`)

(
1√
2π

∫ ∞

−∞
dx e−i(k−`)x g(x)

)
swap integration order

=
1√
2π

∫ ∞

−∞
d` f̃(`) g̃(k − `) from (3.12)

=
1√
2π

(f̃ ∗ g̃)(k) ≡ 1√
2π

(F [f ] ∗ F [g]) (k) from (3.36).

Application. Suppose a linear ‘black box’ (e.g. a circuit) has output G(ω) exp (ıωt) for a periodic input
exp (ıωt). What is the output r(t) corresponding to input f(t)?
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Answer. Since the ‘black box’ is linear, changing the
input produces a directly proportional change in out-
put. Thus since an input exp (ıωt) produces an output
G(ω) exp (ıωt), an input F (ω) exp (ıωt) will produce an
output R(ω) exp (ıωt) = G(ω)F (ω) exp (ıωt).

Moreover, since the ‘black box’ is linear we can superpose input/output, and hence an input

f(t) =
1√
2π

∫ ∞

−∞
F (ω) eıωt dω , (3.39)

will produce an output

r(t) =
1√
2π

∫ ∞

−∞
G(ω)F (ω) eıωt dω

=
1√
2π

∫ ∞

−∞

(
1√
2π

F [f ∗ g]
)

eıωtdω from (3.37)

=
1√
2π

(f ∗ g)(t) , from (3.20b) (3.40)

where g(t) is the inverse transform of G(ω), and we have used t and ω, instead of x and k respec-
tively, as the variables in the Fourier transforms and their inverses.
Remark. If the know the output of a linear black box for all possible harmonic inputs, then we
know everything about the black box. 10/02

10/0
Unlectured Example. A linear electronic device is such that an input f(t) = H(t)e−αt yields an output

r(t) =
H(t)(e−αt − e−βt)

β − α
.

What is the output for an input h(t)?
Answer. Let F (ω) and R(ω) be the Fourier transforms of f(t) and r(t) respectively. Then, since
the device is linear, the principle of superposition means that an input F (ω) exp (ıωt) produces
an output R(ω) exp (ıωt), and that an input exp (ıωt) produces an output G(ω) exp (ıωt) where
G = R/F .
Next we note from (3.19b) with ε = α, a = 0 and k = ω, that the Fourier transform of the input is

F (ω) ≡ F [H(t)e−αt] =
1√
2π

1
α+ ıω

. (3.41a)

Similarly, the Fourier transform of the output is

R(ω) ≡ F
[
H(t)(e−αt − e−βt)

β − α

]
=

1√
2π (β − α)

(
1

α+ ıω
− 1
β + ıω

)
. (3.41b)

Hence

G(ω) =
R(ω)
F (ω)

=
1

β − α

(
1− α+ ıω

β + ıω

)
=

1
β + ıω

. (3.42a)

It then follows from (3.41a) that the inverse transform of G(ω) is given by

g(t) =
√

2πH(t)e−βt . (3.42b)

We can now use the result from the previous example to deduce from (3.40) (with the change of
notation f → h) that the output H(t) to an input h(t) is given by

H(t) =
1√
2π

(h ∗ g)(t) =
1√
2π

∫ ∞

−∞
dy h(y) g(t− y) from definition (3.36)

=
∫ ∞

−∞
dy h(y)H(t− y) e−β(t−y) from (3.42b)

=
∫ t

−∞
dy h(y) eβ(y−t) H(t− y) = 0 for y > t

=
∫ ∞

0

dσ h(t− σ) e−βσ . y = t− σ (3.43)
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3.2.7 The Relationship to Fourier Series

Suppose that f(x) is a periodic function with period L (so that f(x+ L) = f(x)). Then f can be
represented by a Fourier series

f(x) =
∞∑

n=−∞
an exp

(
2πınx
L

)
, (3.44a)

where

an =
1
L

∫ 1
2 L

− 1
2 L

f(x) exp
(
−2πınx

L

)
dx . (3.44b)

Expression (3.44a) can be viewed as a superposition of an infinite number of waves with wavenumbers 10/03

kn = 2πn/L (n = −∞, . . . ,∞). We are interested in the limit as the period L tends to infinity. In this
limit the increment between successive wavenumbers, i.e. ∆k = 2π/L, becomes vanishingly small, and
the spectrum of allowed wavenumbers kn becomes a continuum. Moreover, we recall that an integral can
be evaluated as the limit of a sum, e.g.∫ ∞

−∞
g(k) dk = lim

∆k→0

∞∑
n=−∞

g(kn)∆k where kn = n∆k . (3.45)

Rewrite (3.44a) and (3.44b) as

f(x) =
1√
2π

∞∑
n=−∞

f̃(kn) exp (ıxkn) ∆k ,

and

f̃(kn) =
1√
2π

∫ 1
2 L

− 1
2 L

f(x) exp (−ıxkn) dx ,

where

f̃(kn) =
Lan√

2π
.

We then see that in the limit ∆k → 0, i.e. L→∞,

f(x) =
1√
2π

∫ ∞

−∞
f̃(k) exp (ıxk) dk , (3.46a)

and

f̃(k) =
1√
2π

∫ ∞

−∞
f(x) exp (−ıxk) dx . (3.46b)

These are just our earlier definitions of the inverse Fourier transform (3.20b) and Fourier transform (3.12)
respectively.

3.3 Application: Solution of Differential Equations

Fourier transforms can be used as a method for solving differential equations. We consider two examples.

3.3.1 An Ordinary Differential Equation.

Suppose that ψ(x) satisfies
d2ψ

dx2
− a2ψ = −f(x) , (3.47)
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where a is a constant and f is a known function. Suppose also that ψ satisfies the [two] boundary
conditions |ψ| → 0 as |x| → ∞.

Suppose that we multiply the left-hand side (3.47) by 1√
2π

exp (−ıkx) and integrate over x. Then

1√
2π

∫ ∞

−∞
e−ıkx

(
d2ψ

dx2
− a2ψ

)
dx = F

(
d2ψ

dx2

)
− a2F (ψ) from (3.12)

= −k2F (ψ)− a2F (ψ) from (3.24b). (3.48a)

The same action on the right-hand side yields −F(f). Hence from taking the Fourier transform of the
whole equation we have that

−k2F (ψ)− a2F (ψ) = −F (f) . (3.48b)

Rearranging this equation we have that

F (ψ) =
F (f)
k2 + a2

, (3.48c)

and so from the inverse transform (3.20b) we have the solution

ψ =
1√
2π

∫ ∞

−∞
eıkx F (f)

k2 + a2
dk . (3.48d)

Remark. The boundary conditions that |ψ| → 0 as |x| → ∞ were implicitly used when we assumed that
the Fourier transform of ψ existed. Why?

3.3.2 The Diffusion Equation

Consider the diffusion equation (see (2.23) or (2.29)) governing the evolution of, say, temperature, θ(x, t):

∂θ

∂t
= ν

∂2θ

∂x2
. (3.49)

In § 2.6 we have seen how separable solutions and Fourier series can be used to solve (3.49) over finite
x-intervals. Fourier transforms can be used to solve (3.49) when the range of x is infinite.19

We will assume boundary conditions such as

θ → constant and
∂θ

∂x
→ 0 as |x| → ∞ , (3.50)

so that the Fourier transform of θ exists (at least in a generalised sense):

θ̃(k, t) =
1√
2π

∫ ∞

−∞
e−ıkx θ dx . (3.51)

If we then multiply the left hand side of (3.49) by 1√
2π

exp (−ıkx) and integrate over x we obtain the

time derivative of θ̃:

1√
2π

∫ ∞

−∞
e−ıkx ∂θ

∂t
dx =

∂

∂t

(
1√
2π

∫ ∞

−∞
e−ıkx θ dx

)
swap differentiation and integration

=
∂θ̃

∂t
from (3.51) .

A similar manipulation of the right hand side of (3.49) yields

1√
2π

∫ ∞

−∞
e−ıkx

(
ν
∂2θ

∂x2

)
dx = −νk2θ̃ from (3.24b).

19 Semi-infinite ranges can also be tackled by means of suitable ‘tricks’: see the example sheet.
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Putting the left hand side and the right hand side together it follows that θ̃(k, t) satisfies

∂θ̃

∂t
+ νk2θ̃ = 0 . (3.52a)

This equation has solution 10/01

θ̃(k, t) = γ(k) exp(−νk2t) , (3.52b)

where γ(k) is an unknown function of k (cf. the Γn in (2.69)).

Suppose that the temperature distribution is known at a specific time, wlog t = 0. Then from evaluating
(3.52b) at t = 0 we have that

γ(k) = θ̃(k, 0) and so θ̃(k, t) = θ̃(k, 0) exp(−νk2t) . (3.53)

But from definition (3.12)

θ̃(k, 0) =
1√
2π

∫ ∞

−∞
e−ıkyθ(y, 0) dy , (3.54a)

and so
θ̃(k, t) =

1√
2π

∫ ∞

−∞
exp(−ıky − νk2t) θ(y, 0) dy . (3.54b)

We can now use the Fourier inversion formula to find θ(x, t):

θ(x, t) =
1√
2π

∫ ∞

−∞
dk eıkxθ̃(k, t) from (3.20b)

=
1√
2π

∫ ∞

−∞
dk eıkx

(
1√
2π

∫ ∞

−∞
exp(−ıky − νk2t) θ(y, 0) dy

)
from (3.54b)

=
1
2π

∫ ∞

−∞
dy θ(y, 0)

∫ ∞

−∞
dk exp(ık(x− y)− νk2t) swap integration order.

From completing the square, or alternatively from our earlier calculation of the Fourier transform of a
Gaussian (see (3.18) and apply the transformations ε→ (2νt)−

1
2 , k → (y− x) and x→ k), we have that∫ ∞

−∞
dk exp

(
ık(x− y)− νk2t

)
=
√
π

νt
exp

(
− (x− y)2

4νt

)
. (3.55)

Substituting into the above expression for θ(x, t) we obtain a
solution to the diffusion equation in terms of the initial condi-
tion at t = 0:

θ(x, t) =
1√

4πνt

∫ ∞

−∞
dy θ(y, 0) exp

(
− (x− y)2

4νt

)
. (3.56a)

Example. If θ(x, 0) = θ0δ(x) then we obtain what is sometimes
referred to as the fundamental solution of the diffusion equa-
tion, namely

θ(x, t) =
θ0√
4πνt

exp
(
− x2

4νt

)
. (3.56b)

Physically this means that if the temperature at one point of
an infinite rod is instantaneously raised to ‘infinity’, then the
resulting temperature distribution is that of a Gaussian with a
maximum temperature decaying like t−

1
2 and a width increas-

ing like t
1
2 .
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4 Matrices

4.0 Why Study This?

A very good question (since this material is as dry as the Sahara). A general answer is that matrices
are essential mathematical tools: you have to know how to manipulate them. A more specific answer is
that we will study Hermitian matrices, and observables in quantum mechanics are Hermitian operators.
We will also study eigenvalues, and you should have come across these sufficiently often in your science
courses to know that they are an important mathematical concept.

4.1 Vector Spaces

The concept of a vector in three-dimensional Euclidean space can be generalised to n dimensions.

4.1.1 Some Notation

First some notation.

Notation Meaning

∈ in
∃ there exists
∀ for all

4.1.2 Definition

A set of elements, or ‘vectors’, are said to form a complex linear vector space V if

1. there exists a binary operation, say addition, under which the set V is closed so that

if u,v ∈ V , then u + v ∈ V ; (4.1a)

2. addition is commutative and associative, i.e. for all u,v,w ∈ V

u + v = v + u , (4.1b)
(u + v) + w = u + (v + w) ; (4.1c)

3. there exists closure under multiplication by a complex scalar, i.e.

if a ∈ C and v ∈ V then av ∈ V ; (4.1d)

4. multiplication by a scalar is distributive and associative, i.e. for all a, b ∈ C and u,v ∈ V

a(u + v) = au + av , (4.1e)
(a+ b)u = au + bu , (4.1f)
a(bu) = (ab)u ; (4.1g)

5. there exists a null, or zero, vector 0 ∈ V such that for all v ∈ V

v + 0 = v ; (4.1h)

6. for all v ∈ V there exists a negative, or inverse, vector (−v) ∈ V such that

v + (−v) = 0 . (4.1i)
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Remarks.

• The existence of a negative/inverse vector (see (4.1i)) allows us to subtract as well as add vectors,
by defining

u− v ≡ u + (−v) . (4.2)

• If we restrict all scalars to be real, we have a real linear vector space, or a linear vector space over
reals.

• We will often refer to V as a vector space, rather than the more correct linear vector space.

4.1.3 Linear Independence

A set of m non-zero vectors {u1,u2, . . . um} is linearly
independent if

m∑
i=1

aiui = 0 ⇒ ai = 0 for i = 1, 2, . . . ,m . (4.3)

Otherwise, the vectors are linearly dependent,
i.e. there exist scalars ai, at least one of which
is non-zero, such that

m∑
i=1

aiui = 0 .

Definition: Dimension of a Vector Space. If a vector space V contains a set of n linearly independent
vectors but all sets of n+ 1 vectors are linearly dependent, then V is said to be of dimension n. 11/04

Examples.

1. (1, 0, 0), (0, 1, 0) and (0, 0, 1) are linearly independent since

a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = (a, b, c) = 0 ⇒ a = 0, b = 0, c = 0 .

2. (1, 0, 0), (0, 1, 0) and (1, 1, 0) = (1, 0, 0) + (0, 1, 0) are linearly dependent.

3. Since
(a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) , (4.4)

the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) span a linear vector space of dimension 3.

4.1.4 Basis Vectors

If V is an n-dimensional vector space then any set of n linearly independent vectors {u1, . . . ,un} is a
basis for V . The are a couple of key properties of a basis. 11/02

11/03

1. We claim that for all vectors v ∈ V , there exist scalars vi such that

v =
n∑

i=1

viui . (4.5)

The vi are said to be the components of v with respect to the basis {u1, . . . ,un}.
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Proof. To see this we note that since V has dimension n, the set {u1, . . . ,un,v} is linearly depen-
dent, i.e. there exist scalars (a1, . . . , an, b), not all zero, such that

n∑
i=1

aiui + bv = 0 . (4.6)

If b = 0 then the ai = 0 for all i because the ui are linear independent, and we have a contradiction;
hence b 6= 0. Multiplying by b−1 we have that

v =−
n∑

i=1

(
b−1ai

)
ui

=
n∑

i=1

viui , (4.7)

where vi = −b−1ai (i = 1, . . . , n). 2

2. The scalars v1, . . . , vn are unique.

Proof. Suppose that

v =
n∑

i=1

viui and that v =
n∑

i=1

wiui . (4.8)

Then, because v − v = 0,

0 =
n∑

i=1

(vi − wi)ui. (4.9)

But the ui (i = 1, . . . , n) are linearly independent, so the only solution of this equation is vi − wi = 0
(i = 1, . . . n). Hence vi = wi (i = 1, . . . n), and we conclude that the two linear combinations (4.8)
are identical. 2

Remark. Let {u1, . . . ,um} be a set of vectors in an n-dimensional vector space.

• If m > n then there exists some vector that, when expressed as a linear combination of the
ui, has non-unique scalar coefficients. This is true whether or not the ui span V .

• If m < n then there exists a vector that cannot be expressed as a linear combination of the ui.

Examples.

1. Three-Dimensional Euclidean Space E3. In this case the scalars are real and V is three-dimensional
because every vector v can be written uniquely as (cf. (4.4))

v = vxex + vyey + vzez (4.10a)
= v1u1 + v2u2 + v3u3 , (4.10b)

where {ex = u1 = (1, 0, 0), ey = u2 = (0, 1, 0), e3 = u1 = (0, 0, 1)} is a basis.

2. The Complex Numbers. Here we need to be careful what we mean.

Suppose we are considering a complex linear vector space,
i.e. a linear vector space over C. Then because the scalars
are complex, every complex number z can be written
uniquely as

z = α · 1 where α ∈ C , (4.11a)

and moreover

α · 1 = 0 ⇒ α = 0 for α ∈ C . (4.11b)

We conclude that the single ‘vector’ {1} constitutes a ba-
sis for C when viewed as a linear vector space over C.
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However, we might alternatively consider the complex numbers as a linear vector space over R, so
that the scalars are real. In this case the pair of ‘vectors’ {1, i} constitute a basis because every
complex number z can be written uniquely as

z = a · 1 + b · ı where a, b ∈ R , (4.12a)

and

a · 1 + b · ı = 0 ⇒ a = b = 0 if a, b,∈ R . (4.12b)

Thus we have that
dimC C = 1 but dimR C = 2 , (4.13)

where the subscript indicates whether the vector space C is considered over C or R.

Worked Exercise. Show that 2× 2 real symmetric matrices form a real linear vector space under addition.
Show that this space has dimension 3 and find a basis.

Answer. Let V be the set of all real symmetric matrices, and let

A =
(
αa βa

βa γa

)
, B =

(
αb βb

βb γb

)
, C =

(
αc βc

βc γc

)
,

be any three real symmetric matrices.

1. We note that addition is closed since A + B is a real symmetric matrix.

2. Addition is commutative and associative since for all [real symmetric] matrices, A + B = B + A
and (A + B) + C = A + (B + C).

3. Multiplication by a scalar is closed since if p ∈ R, then pA is a real symmetric matrix.

4. Multiplication by a scalar is distributive and associative since for all p, q ∈ R and for all [real
symmetric] matrices, p(A + B) = pA + pB, (p+ q)A = pA + qA and p(qA) = (pq)A.

5. The zero matrix,

0 =
(

0 0
0 0

)
,

is real and symmetric (and hence in V ), and such that for all [real symmetric] matrices
A + 0 = A.

6. For any [real symmetric] matrix there exists a negative matrix, i.e. that matrix with the
components reversed in sign. In the case of a real symmetric matrix, the negative matrix is
again real and symmetric.

Therefore V is a real linear vector space; the ‘vectors’ are the 2× 2 real symmetric matrices.
Moreover, the three 2× 2 real symmetric matrices

U1 =
(

1 0
0 0

)
, U2 =

(
0 1
1 0

)
, and U3 =

(
0 0
0 1

)
, (4.15)

are independent, since for p, q, r ∈ R

pU1 + qU2 + rU3 =
(
p q
q r

)
= 0 ⇒ p = q = r = 0 .

Further, any 2× 2 real symmetric matrix can be expressed as a linear combination of the Ui since(
p q
q r

)
= pU1 + qU2 + rU3 .

We conclude that the 2× 2 real symmetric matrices form a three-dimensional real linear vector
space under addition, and that the ‘vectors’ Ui defined in (4.15) form a basis. 11/01

Exercise. Show that 3× 3 symmetric real matrices form a vector space under addition. Show that this
space has dimension 6 and find a basis.
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4.2 Change of Basis: the Rôle of Matrices

4.2.1 Transformation Matrices

Let {ui : i = 1, . . . , n} and {u′i : i = 1, . . . , n} be two sets of basis vectors for an n-dimensional vector
space V . Since the {ui : i = 1, . . . , n} is a basis, the individual basis vectors of the basis {u′i : i = 1, . . . , n}
can be written as

u′j =
n∑

i=1

uiAij (j = 1, . . . , n) , (4.16)

for some numbers Aij . From (4.5) we see that Aij is the ith component of the vector u′j in the basis
{ui : i = 1, . . . , n}. The numbers Aij can be represented by a square n× n transformation matrix A

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

 . (4.17)

Similarly, since the {u′i : i = 1, . . . , n} is a basis, the individual basis vectors of the basis {ui : i = 1, . . . , n}
can be written as

ui =
n∑

k=1

u′kBki (i = 1, 2, . . . , n) , (4.18)

for some numbers Bki. Here Bki is the kth component of the vector ui in the basis {u′k : k = 1, . . . , n}.
Again the Bki can be viewed as the entries of a matrix B

B =


B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · Bnn

 . (4.19)

4.2.2 Properties of Transformation Matrices

From substituting (4.18) into (4.16) we have that

u′j =
n∑

i=1

[ n∑
k=1

u′kBki

]
Aij =

n∑
k=1

u′k

[ n∑
i=1

BkiAij

]
. (4.20)

However, because of the uniqueness of a basis representation and the fact that

u′j = u′j · 1 =
n∑

k=1

u′k δkj ,

it follows that
n∑

i=1

BkiAij = δkj . (4.21)

Hence in matrix notation, BA = I, where I is the identity matrix. Conversely, substituting (4.16) into
(4.18) leads to the conclusion that AB = I (alternatively argue by a relabeling symmetry). Thus

B = A−1 , (4.22a)

and

detA 6= 0 and det B 6= 0 . (4.22b)
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4.2.3 Transformation Law for Vector Components

Consider a vector v, then in the {ui : i = 1, . . . , n} basis we have from (4.5)

v =
n∑

i=1

viui .

Similarly, in the {u′i : i = 1, . . . , n} basis we can write

v =
n∑

j=1

v′ju
′
j (4.23)

=
n∑

j=1

v′j

n∑
i=1

uiAij from (4.16)

=
n∑

i=1

ui

n∑
j=1

(Aijv
′
j) swap summation order.

Since a basis representation is unique it follows from (4.5) that

vi =
n∑

j=1

Aijv
′
j , (4.24)

which relates the components of v in the basis {ui : i = 1, . . . , n} to those in the basis {u′i : i = 1, . . . , n}.

Some Notation. Let v and v′ be the column matrices

v =


v1
v2
...
vn

 and v′ =


v′1
v′2
...
v′n

 respectively. (4.25)

Note that we now have bold v denoting a vector, italic vi denoting a component of a vector, and
sans serif v denoting a column matrix of components. Then (4.24) can be expressed as

v = Av′ . (4.26a)

By applying A−1 to either side of (4.26a) it follows that

v′ = A−1v . (4.26b)

Unlectured Remark. Observe by comparison between (4.16) and (4.26b) that the components of v trans-
form inversely to the way that the basis vectors transform. This is so that the vector v is unchanged:

v =
n∑

j=1

v′ju
′
j from (4.23)

=
n∑

j=1

(
n∑

k=1

(A−1)jkvk

)(
n∑

i=1

uiAij

)
from (4.26b) and (4.16)

=
n∑

i=1

ui

 n∑
k=1

vk

 n∑
j=1

Aij(A−1)jk

 swap summation order

=
n∑

i=1

ui

(
n∑

k=1

vkδik

)
AA−1 = I

=
n∑

i=1

viui . contract using (0.11b)
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Worked Example. Let {u1 = (1, 0),u2 = (0, 1)} and {u′1 = (1, 1),u′2 = (−1, 1)} be two sets of basis vec-
tors in R2. Find the transformation matrix Aij that connects them. Verify the transformation law
for the components of an arbitrary vector v in the two coordinate systems.
Answer. We have that

u′1 = ( 1, 1) = (1, 0) + (0, 1) = u1 + u2 ,

u′2 = (−1, 1) = −1 · (1, 0) + (0, 1) = −u1 + u2 .

Hence from comparison with (4.16)

A11 = 1 , A21 = 1 , A12 = −1 and A22 = 1 ,

i.e.

A =
(

1 −1
1 1

)
with inverse A−1 =

1
2

(
1 1

−1 1

)
.

First Check. Note that A−1 is consistent with the observation that

u1 = (1, 0) = 1
2 ( (1, 1)− (−1, 1) ) = 1

2 (u′1 − u′2) ,

u2 = (0, 1) = 1
2 ( (1, 1) + (−1, 1) ) = 1

2 (u′1 + u′2) .

Second Check. Consider an arbitrary vector v, then

v = v1u1 + v2u2

= 1
2v1(u

′
1 − u′2) + 1

2v2(u
′
1 + u′2)

= 1
2 (v1 + v2)u′1 − 1

2 (v1 − v2)u′2 .

Thus
v′1 = 1

2 (v1 + v2) and v′2 = − 1
2 (v1 − v2) .

From (4.26b), i.e. v′ = A−1v, we obtain as above that

A−1 =

(
1
2

1
2

− 1
2

1
2

)
.

12/02
12/03
12/04

4.3 Scalar Product (Inner Product)

4.3.1 Definition of a Scalar Product

The prototype linear vector space V = E3 has the additional property that any two vectors u and v can
be combined to form a scalar u · v. This can be generalised to an n-dimensional vector space V over C
by assigning, for every pair of vectors u, v ∈ V , a scalar product u ·v ∈ C with the following properties.

1. If we [again] denote a complex conjugate with ∗ then we require that

u · v = (v · u)∗ . (4.27a)

Note that implicit in this equation is the conclusion that for a complex vector space the ordering
of the vectors in the scalar product is important (whereas for E3 this is not important). Further, if
we let u = v, then this implies that

v · v = (v · v)∗ , (4.27b)

i.e. v · v is real.

2. The scalar product should be linear in its second argument, i.e. for a, b ∈ C

u · (av1 + bv2) = au · v1 + bu · v2 . (4.27c)

3. The scalar product of a vector with itself should be positive, i.e.

v · v > 0 . (4.27d)

This allows us to write v · v = |v|2, where the real positive number |v| is the norm (cf. length) of
the vector v.
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4. We shall also require that the only vector of zero norm should be the zero vector, i.e.

|v| = 0 ⇒ v = 0 . (4.27e)

Remark. Properties (4.27a) and (4.27c) imply that for a, b ∈ C

(au1 + bu2) · v = (v · (au1 + bu2))
∗

= (av · u1 + bv · u2)
∗

= a∗ (v · u1)
∗ + b∗ (v · u2)

∗

= a∗ (u1 · v) + b∗ (u2 · v) , (4.28)

i.e. the scalar product is ‘anti-linear’ in the first argument.

Failure to remember this is a common cause of error.

However, if a, b ∈ R then (4.28) reduces to linearity in both arguments.

Alternative notation. An alternative notation for the scalar product and associated norm is

〈u |v 〉 ≡ u · v , (4.29a)

‖v‖ ≡ |v| = (v · v)
1
2 . (4.29b)

4.3.2 Worked Exercise

Question. Find a definition of inner product for the vector space of real symmetric 2× 2 matrices under
addition.

Answer. We have already seen that the real symmetric 2 × 2 matrices form a vector space. In defining
an inner product a key point to remember is that we need property (4.43a), i.e. that the scalar
product of a vector with itself is zero only if the vector is zero. Hence for real symmetric 2 × 2
matrices A and B consider the inner product defined by

〈A |B 〉 =
n∑

i=1

n∑
j=1

A∗ijBij (4.30a)

= A∗11B11 +A∗12B12 +A∗21B21 +A∗22B22 , (4.30b)

where we are using the alternative notation (4.29a) for the inner product. For this definition of
inner product we have for real symmetric 2× 2 matrices A, B and C, and a, b ∈ C:

• as in (4.27a)

〈B |A 〉 =
n∑

i=1

n∑
j=1

B∗ijAij = 〈A |B 〉∗ ;

• as in (4.27c)

〈A | (βB + γC) 〉 =
n∑

i=1

n∑
j=1

A∗ij(βBij + γCij)

= β
n∑

i=1

n∑
j=1

A∗ijBij + γ
n∑

i=1

n∑
j=1

A∗ijCij

= β 〈A |B 〉+ γ 〈A |C 〉 ;

• as in (4.27d)

〈A |A 〉 =
n∑

i=1

n∑
j=1

A∗ijAij =
n∑

i=1

n∑
j=1

|Aij |2 > 0 ;

• as in (4.27e)
〈A |A 〉 = 0 ⇒ A = 0 .

Hence we have a well defined inner product.
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4.3.3 Some Inequalities

Schwarz’s Inequality. This states that
|〈u |v 〉| 6 ‖u‖ ‖v‖ , (4.31)

with equality only when u is a scalar multiple of v.
Proof. Write 〈u |v 〉 = |〈u |v 〉|eıα, and for λ ∈ C consider

‖u + λv‖2 = 〈u + λv |u + λv 〉 from (4.29b)

= 〈u |u 〉+ λ〈u |v 〉+ λ∗〈v |u 〉+ |λ|2〈v |v 〉 from (4.27c) and (4.28)

= 〈u |u 〉+ (λeıα + λ∗e−ıα)|〈u |v 〉|+ |λ|2〈v |v 〉 from (4.27a).

First, suppose that v = 0. The right-hand-side then simplifies from a quadratic in λ to an expression
that is linear in λ. If 〈u |v 〉 6= 0 we then have a contradiction since for certain choices of λ this
simplified expression can be negative. Hence we conclude that

〈u |v 〉 = 0 if v = 0 ,

in which case (4.31) is satisfied as an equality. Next suppose
that v 6= 0 and choose λ = re−ıα so that from (4.27d)

0 6 ‖u + λv‖2 = ‖u‖2 + 2r|〈u |v 〉|+ r2‖v‖2 .

The right-hand-side is a quadratic in r that has a minimum
when r‖v‖2 = −|〈u |v 〉|. Schwarz’s inequality follows on
substituting this value of r, with equality if u = −λv. 2

The Triangle Inequality. This states that

‖u + v‖ 6 ‖u‖+ ‖v‖ . (4.32)

Proof. This follows from taking square roots of the following inequality:

‖u + v‖2 = 〈u |u 〉+ 〈u |v 〉+ 〈u |v 〉∗ + 〈v |v 〉 from above with λ = 1

= ‖u‖2 + 2 Re 〈u |v 〉+ ‖v‖2 from (4.27a)

6 ‖u‖2 + 2|〈u |v 〉|+ ‖v‖2

6 ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 from (4.31)

6 (‖u‖+ ‖v‖)2 .

4.3.4 The Scalar Product in Terms of Components

Suppose that we have a scalar product defined on a vector space with a given basis {ui : i = 1, . . . , n}.
We will next show that the scalar product is in some sense determined for all pairs of vectors by its
values for all pairs of basis vectors. To start, define the complex numbers Gij by

Gij = ui · uj (i, j = 1, . . . , n) . (4.33)

Then, for any two vectors

v =
n∑

i=1

viui and w =
n∑

j=1

wjuj , (4.34)

we have that

v ·w =
( n∑

i=1

viui

)
·
( n∑

j=1

wjuj

)
=

n∑
i=1

n∑
j=1

v∗iwj ui · uj from (4.27c) and (4.28)

=
n∑

i=1

n∑
j=1

v∗iGijwj . (4.35)
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We can simplify this expression (which determines the scalar product in terms of the Gij), but first it
helps to have a definition.

Definition. The Hermitian conjugate of a matrix A is defined to be

A† = (AT)∗ = (A∗)T , (4.36)

where T denotes a transpose.

Example.

If A =
(
A11 A12

A21 A22

)
then A† =

(
A∗11 A∗21
A∗12 A∗22

)
.

Properties. For matrices A and B recall that (AB)T = BTAT. Hence (AB)T∗ = BT∗AT∗, and so

(AB)† = B†A† . (4.37a)

Also, from (4.36),
A†† =

(
A∗T

)T∗
= A . (4.37b)

Let w be the column matrix

w =


w1

w2

...
wn

 , (4.38a)

and let v† be the Hermitian conjugate of the column matrix v, i.e. v† is the row matrix

v† ≡ (v∗)T =
(
v∗1 v∗2 . . . v∗n

)
. (4.38b)

Then the scalar product (4.35) can be written as

v ·w = v†Gw , (4.39)

where G is the matrix, or metric, with entries Gij (metrics are a key ingredient of General Relativity).

4.3.5 Properties of the Metric

First two definitions for a n× n matrix A.

Definition. The matrix A is said to be a Hermitian if it is equal to its own Hermitian conjugate, i.e. if

A† = A . (4.40)

Definition. The matrix A is said to be positive definite if for all column matrices v of length n,

v†Av > 0 , with equality iff v = 0 . (4.41)

Remark. If equality to zero were possible in (4.41) for non-zero v, then A would said to be positive rather
than positive definite.

Property: a metric is Hermitian. The elements of the Hermitian conjugate of the metric G are the com-
plex numbers

(G†)ij ≡ G†ij = (Gji)∗ from (4.36) (4.42a)

= (uj · ui)∗ from (4.33)
= ui · uj from (4.27a)
= Gij . from (4.33) (4.42b)

Hence G is Hermitian, i.e.
G† = G . (4.42c)
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Remark. That G is Hermitian is consistent with the requirement (4.27b) that |v|2 = v · v is real, since

(v · v)∗ = ((v · v)∗)T since a scalar is its own transpose

= (v · v)† from definition (4.36)

= (v† Gv)† from (4.39)

= v† G† v from (4.37a) and (4.37b)

= v† Gv from (4.42c)
= v · v . from (4.39)

Property: a metric is positive definite. From (4.27d) and (4.27e) we have from the properties of a scalar
product that for any v

|v|2 > 0 with equality iff v = 0 , (4.43a)

where ‘iff’ means if and only if. Hence, from (4.39), for any v

v†Gv > 0 with equality iff v = 0 . (4.43b)

It follows that G is positive definite.

4.4 Change of Basis: Diagonalization

4.4.1 Transformation Law for Metrics

In §4.2 we determined how vector components transform under a change of basis from {ui : i = 1, . . . , n}
to {u′i : i = 1, . . . , n}, while in §4.3 we introduced inner products and defined the metric associated with
a given basis. We next consider how a metric transforms under a change of basis.

First we recall from (4.26a) that for an arbitrary vector v, its components in the two bases transform
according to v = Av′, where v and v′ are column vectors containing the components. From taking the
Hermitian conjugate of this expression, we also have that

v† = v′†A† . (4.44)

Hence for arbitrary vectors v and w

v ·w = v†Gw from (4.39)

= v′†A†GAw′ from (4.26a) and (4.44).

But from (4.39) we must also have that in terms of the new basis

v ·w = v′†G′w′ , (4.45)

where G′ is the metric in the new {u′i : i = 1, . . . , n} basis. Since v and w are arbitrary we conclude that
the metric in the new basis is given in terms of the metric in the old basis by

G′ = A†GA . (4.46)

Unlectured Alternative Derivation. (4.46) can also be derived from the definition of the metric since

(G′)ij ≡ G′ij = u′i · u′j from (4.33)

=

(
n∑

k=1

ukAki

)
·

(
n∑

`=1

u`A`j

)
from (4.16)

=
n∑

k=1

n∑
`=1

A∗ki(uk · u`)A`j from (4.27c) and (4.28)

=
n∑

k=1

n∑
`=1

A†ikGk`A`j from (4.33) and (4.42a)

= (A†GA)ij . (4.47)
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Remark. As a check we observe that

(G′)† = (A†GA)† = A†G†(A†)† = A†GA = G′ . (4.48)

Thus G′ is confirmed to be Hermitian. 13/02
13/03
13/04

4.4.2 Diagonalization of the Metric

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

Let us suppose that there exists an invertible matrix
A such that

G′ = A†GA = Λ , (4.49a)

where Λ is a diagonal matrix, i.e. a matrix such that

Λij = λiδij . (4.49b)

The matrix A is said to diagonalize G. Subsequently
we shall (almost) show that for any Hermitian ma-
trix G a matrix A can be found to diagonalize G.

Properties of the λi.

1. Because G′ = Λ is Hermitian,

λ∗i = Λ∗ii = Λii = λi (i = 1, . . . , n), (4.50)

and hence the diagonal entries λi are real.

2. From (4.45), (4.49a) and (4.49b) we have that

0 6 |v|2 = v′†G′v′

=
n∑

i=1

n∑
j=1

v′∗i λiδijv
′
j

=
n∑

i=1

λi|v′i|2 , (4.51)

with equality only if v = 0 (see (4.27e)). This can only be true for all vectors v if

λi > 0 for i = 1, . . . , n , (4.52)

i.e. if the diagonal entries λi are strictly positive.

4.4.3 Orthonormal Bases

From (4.33), (4.49a) and (4.49b) we see that

u′i · u′j = G′ij = Λij = λiδij . (4.53)

Hence u′i · u′j = 0 when i 6= j, i.e. the new basis vectors are orthogonal. Further, because the λi are
strictly positive we can normalise the basis, viz.

ei =
1√
λi

u′i , (4.54a)

so that
ei · ej = δij . (4.54b)

The {ei : i = 1, . . . , n} are thus an orthonormal basis. We conclude, subject to showing that G can be
diagonalized (because it is an Hermitian matrix), that:
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Any vector space with a scalar product has an orthonormal basis.

It also follows, since from (4.33) the elements of the metric are just ei · ej , that the metric for an
orthonormal basis is the identity matrix I.

The scalar product in orthonormal bases. Let the column vectors v and w contain the components of two
vectors v and w, respectively, in an orthonormal basis {ei : i = 1, . . . , n}. Then from (4.39)

v ·w = v†I w = v† w . (4.55)

This is consistent with the definition of the scalar product from last year.

Orthogonality in orthonormal bases. If the vectors v and w are orthogonal, i.e. v · w = 0, then the
components in an orthonormal basis are such that

v†w = 0 . (4.56)

4.5 Unitary and Orthogonal Matrices

Given an orthonormal basis, a question that arises is what changes of basis maintain orthonormality.
Suppose that {e′i : i = 1, . . . , n} is a new orthonormal basis, and suppose that in terms of the original
orthonormal basis

e′i =
n∑

k=1

ek Uki , (4.57)

where U is the transformation matrix (cf. (4.16)). Then from (4.46) the metric for the new basis is given
by

G′ = U†I U = U†U . (4.58a)

For the new basis to be orthonormal we require that the new metric to be the identity matrix, i.e. we
require that

U†U = I . (4.58b)

Since det U 6= 0, the inverse U−1 exists and hence

U† = U−1 . (4.59)

Definition. A matrix for which the Hermitian conjugate is equal to the inverse is said to be unitary.

Vector spaces over R. An analogous result applies to vector spaces over R. Then, because the transfor-
mation matrix, say U = R, is real,

U† = RT ,

and so

RT = R−1 . (4.60)

Definition. A real matrix with this property is said to be orthogonal.

Example. An example of an orthogonal matrix is the 3 × 3 rotation matrix R that determines
the new components, v′ = RTv, of a three-dimensional vector v after a rotation of the axes
(note that under a rotation orthogonal axes remain orthogonal and unit vectors remain unit
vectors).

13/01
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4.6 Diagonalization of Matrices: Eigenvectors and Eigenvalues

Suppose that M is a square n× n matrix. Then a non-zero column vector x such that

Mx = λx , (4.61a)

where λ ∈ C, is said to be an eigenvector of the matrix M with eigenvalue λ. If we rewrite this equation
as

(M− λI)x = 0 , (4.61b)

then since x is non-zero it must be that

det(M− λI) = 0 . (4.62)

This is called the characteristic equation of the matrix M. The left-hand-side of (4.62) is an nth order
polynomial in λ called the characteristic polynomial of M. The roots of the characteristic polynomial are
the eigenvalues of M.

Example. Find the eigenvalues of

M =
(

0 1
−1 0

)
(4.63a)

Answer. From (4.62)

0 = det(M− λI) =
∥∥∥∥ −λ 1
−1 −λ

∥∥∥∥ = λ2 + 1 = (λ− ı)(λ+ ı) , (4.63b)

and so the eigenvalues of M are ±ı.

Since an nth order polynomial has exactly n, possibly complex, roots (counting multiplicities in the case
of repeated roots), there are always n eigenvalues λi, i = 1, . . . , n. Let xi be the respective eigenvectors,
i.e.

Mxi = λix
i (4.64a)

or in component notation

n∑
k=1

Mjkx
i
k = λix

i
j . (4.64b)

Let X be the n× n matrix defined by
(X)ij ≡ Xij = xj

i , (4.65a)

i.e.

X =


x1

1 x2
1 · · · xn

1

x1
2 x2

2 · · · xn
2

...
...

. . .
...

x1
n x2

n · · · xn
n

 . (4.65b)

Then (4.64b) can be rewritten as

n∑
k=1

MjkXki = λiXji =
n∑

k=1

Xjk δkiλi (4.66a)

or, in matrix notation,
MX = XΛ , (4.66b)
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where Λ is the diagonal matrix

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 . (4.66c)

If X has an inverse, X−1, then
X−1MX = Λ , (4.67)

i.e. X diagonalizes M. But for X−1 to exist we require that det X 6= 0; this is equivalent to the requirement
that the columns of X are linearly independent. These columns are just the eigenvectors of M, so

an n× n matrix is diagonalizable if and only if it has n linearly-independent eigenvectors.

4.7 Eigenvalues and Eigenvectors of Hermitian Matrices

In order to determine whether a metric is diagonalizable, we conclude from the above considerations that
we need to determine whether the metric has n linearly-independent eigenvectors. To this end we shall
determine two important properties of Hermitian matrices.

4.7.1 The Eigenvalues of an Hermitian Matrix are Real

Let H be an Hermitian matrix, and suppose that e is a non-zero eigenvector with eigenvalue λ. Then

H e = λ e , (4.68a)

and hence

e†H e = λ e†e . (4.68b)

Take the Hermitian conjugate of both sides; first the left hand side(
e†He

)†
= e†H†e since (AB)† = B†A† and (A†)† = A

= e†He since H is Hermitian, (4.69a)

and then the right

(λ e†e)† = λ∗e†e . (4.69b)

On equating the above two results we have that

e†He = λ∗e†e . (4.70)

It then follows from (4.68b) and (4.70) that

(λ− λ∗) e†e = 0 . (4.71)

However we have assumed that e is a non-zero eigenvector, so

e†e =
n∑

i=1

e∗i ei =
n∑

i=1

|ei|2 > 0 , (4.72)

and hence it follows from (4.71) that λ = λ∗, i.e. that λ is real.
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4.7.2 An n-Dimensional Hermitian Matrix has n Orthogonal Eigenvectors

λi 6= λj. Let ei and ej be two eigenvectors of an Hermitian matrix H. First of all suppose that their
respective eigenvalues λi and λj are different, i.e. λi 6= λj . From pre-multiplying (4.68a), with
e → ei, by (ej)† we have that

ej† H ei = λi ej† ei . (4.73a)

Similarly

ei† H ej = λj ei† ej . (4.73b)

On taking the Hermitian conjugate of (4.73b) it follows that

ej† H† ei = λ∗j ej† ei .

However, H is Hermitian, i.e. H† = H, and we have seen above that the eigenvalue λj is real, hence

ej†H ei = λj ej† ei . (4.74)

On subtracting (4.74) from (4.73a) we obtain

0 = (λi − λj) ej† ei . (4.75)

Hence if λi 6= λj it follows that
ej† ei = 0 . (4.76)

Now if the column vectors ei and ej are interpreted as the components of two vectors in an
orthonormal basis, then from (4.56) we see that the two vectors ei and ej = 0 are orthogonal in
the scalar product sense.

λi = λj. The case when there is a repeated eigenvalue is more difficult. However with sufficient mathe-
matical effort it can still be proved that orthogonal eigenvectors exist for the repeated eigenvalue.
Instead of adopting this approach we appeal to arm-waving arguments.

An ‘experimental’ approach. First adopt an ‘experimental’ approach. In real life it is highly unlikely
that two eigenvalues will be exactly equal (because of experimental error, etc.). Hence this
case never arises and we can assume that we have n orthogonal eigenvectors.

A perturbation approach. Alternatively suppose that in
the real problem two eigenvalues are exactly equal.
Introduce a specific, but small, perturbation of size
ε (cf. the ε introduced in (3.19b) when calculating
the Fourier transform of the Heaviside step function)
such that the perturbed problem has unequal eigen-
values (this is highly likely to be possible because the
problem with equal eigenvalues is likely to be ‘struc-
turally unstable’). Now let ε → 0. For all non-zero
values of ε (both positive and negative) there will be
n orthogonal eigenvectors. On appealing to a conti-
nuity argument there will be n orthogonal eigenvec-
tors for the specific case ε = 0.

14/02
14/04

Lemma. Orthogonal eigenvectors ei and ej are linearly independent.

Proof. Suppose there exist ai and aj such that

aie
i + aje

j = 0 . (4.77)
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Then from pre-multiplying (4.77) by ej† and using (4.76) it follows that

0 = aje
j†ej = aj

n∑
k=1

(ej)∗k(ej)k = aj

n∑
k=1

∣∣(ej)k

∣∣2 . (4.78)

Since ej is non-zero it follows that aj = 0. By the relabeling symmetry, or by using the Hermitian
conjugate of (4.76), it similarly follows that ai = 0. 2

We conclude that, whether or not two or more eigenvalues are equal,

an n-dimensional Hermitian matrix has n orthogonal eigenvectors that are linearly independent.

Remark. We can tighten this is result a little further by noting that, for any µ ∈ C,

if Hei = λie
i , then H(µei) = λi(µei) . (4.79a)

This allows us to normalise the eigenvectors so that

ei† ei = 1 . (4.79b)

Hence for Hermitian matrices it is always possible to find n orthonormal eigenvectors that are
linearly independent.

14/03

4.7.3 Diagonalization of Hermitian Matrices

It follows from the above result, § 4.6, and specifically (4.65b), that an Hermitian matrix H can be
‘diagonalized’ to the matrix Λ by means of the transformation X−1H X if

X =


e11 e21 · · · en

1

e12 e22 · · · en
2

...
...

. . .
...

e1n e2n · · · en
n

 . (4.80)

Remark. If the ei are orthonormal eigenvectors of H then X is a unitary matrix. To see this note that

(X† X)ij =
n∑

k=1

(X†)ik(X)kj

=
n∑

k=1

(ei
k)∗ej

k

= ei† ej

= δij by orthonormality, (4.81a)

or, in matrix notation,
X† X = I. (4.81b)

Hence X† = X−1, and we conclude X is a unitary matrix.

We deduce that every Hermitian matrix, H, is diagonalizable by a transformation X†H X, where X is a
unitary matrix. Hence, if in (4.49a) we identify H and X with G and A respectively, we see that

a metric can always be diagonalized by a suitable choice of basis,

namely the basis made up of the eigenvectors of G. Similarly, if we restrict ourselves to real matrices, then
every real symmetric matrix, S, is diagonalizable by a transformation RTSR, where R is an orthogonal
matrix.
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Example. Find the orthogonal matrix that diagonalizes the real symmetric matrix

S =
(

1 β
β 1

)
where β > 0 is real. (4.82)

Answer. The characteristic equation is

0 =
∥∥∥∥ 1− λ β

β 1− λ

∥∥∥∥ = (1− λ)2 − β2 . (4.83)

The solutions to (4.83) are

λ =

{
λ+ = 1 + β

λ− = 1− β
. (4.84)

The corresponding eigenvectors e± are found from(
1− λ± β

β 1− λ±

)(
e±1

e±2

)
= 0 , (4.85a)

or

β

(
∓1 1

1 ∓1

)(
e±1

e±2

)
= 0 . (4.85b)

β 6= 0. If β 6= 0 (in which case λ+ 6= λ−) we have that

e±2 = ± e±1 . (4.86a)

On normalising e± so that e±† e± = 1, it follows that

e+ =
1√
2

(
1
1

)
, e− =

1√
2

(
1

−1

)
. (4.86b)

Note that e+† e− = 0, as proved earlier.

β = 0. If β = 0, then S = I, and so any non-zero vector is an eigenvector with eigenvalue 1. In
agreement with the result stated earlier, two linearly-independent eigenvectors can still be
found, and we can choose them to be orthonormal, e.g. e+ and e− as above (if fact there is
an uncountable choice of orthonormal eigenvectors in this very special case).

To diagonalize S when β 6= 0 (it already is diagonal if β = 0) we construct an orthogonal matrix R
using (4.80):

R ≡ X =

(
e+1 e−1

e+2 e−2

)
=

( 1√
2

1√
2

1√
2

− 1√
2

)
=

1√
2

(
1 1

1 −1

)
. (4.87)

As a check we note that

RTR =
1
2

(
1 1
1 −1

)(
1 1
1 −1

)
=

(
1 0
0 1

)
, (4.88)

and

RTSR =
1
2

(
1 1
1 −1

)(
1 β

β 1

)(
1 1
1 −1

)

=
1
2

(
1 1
1 −1

)(
1 + β 1− β

1 + β −1 + β

)

=

(
1 + β 0

0 1− β

)
= Λ . (4.89)
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4.7.4 Diagonalization of Matrices

For a general n × n matrix M with n distinct eigenvalues λi, (i = 1, . . . , n), it is possible to show (but
not here) that there are n linearly independent eigenvectors ei. It then follows from our earlier results in
§ 4.6 that M is diagonalized by the matrix

X =


e11 e21 · · · en

1

e12 e22 · · · en
2

...
...

. . .
...

e1n e2n · · · en
n

 . (4.90)

Remark. If M has two or more equal eigenvalues it may or may not have n linearly independent eigen-
vectors. If it does not have n linearly independent eigenvectors then it is not diagonalizable. As an
example consider the matrix

M =
(

0 1
0 0

)
, (4.91)

with the characteristic equation λ2 = 0; hence λ1 = λ2 = 0. Moreover, M has only one linearly
independent eigenvector, namely

e =
(

1
0

)
, (4.92)

and so M is not diagonalizable.

Normal Matrices. However, normal matrices, i.e. matrices such that M†M = M M†, always have n linearly
independent eigenvectors and can always be diagonalized. Hence, as well as Hermitian matrices,
skew-symmetric Hermitian matrices (H† = −H) and unitary matrices (and their real restrictions)
can always be diagonalized.

4.8 Hermitian and Quadratic Forms

Definition. Let H be an Hermitian matrix. The expression

x†Hx =
n∑

i=1

n∑
j=1

x∗iHijxj , (4.93a)

is called an Hermitian form; it is a function of the complex numbers (x1, x2, . . . , xn). Moreover, we
note that

(x†Hx)∗ = (x†Hx)† since a scalar is its own transpose

= x†H†x since (AB)† = B†A†

= x†Hx . since H is Hermitian

Hence an Hermitian form is real.

The Real Case. An important special case is obtained by restriction to real vector spaces; then x and H
are real. It follows that HT = H, i.e. H is a real symmetric matrix; let us denote such a matrix by S.
In this case

xTSx =
n∑

i=1

n∑
j=1

xiSijxj . (4.93b)

When considered as a function of the real variables x1, x2, . . . , xn, this expression called a quadratic
form.

Remark. In the same way that an Hermitian matrix can be viewed as a generalisation to complex matrices
of a real symmetric matrix, an Hermitian form can be viewed a generalisation to vector spaces over
C of a quadratic form for a vector space over R.
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4.8.1 Eigenvectors and Principal Axes

Let us consider the equation
xTSx = constant , (4.94)

where S is a real symmetric matrix.

Conic Sections. First suppose that n = 2, then with

x =
(
x
y

)
and S =

(
α β
β γ

)
, (4.95)

(4.94) becomes
αx2 + 2βxy + γy2 = constant . (4.96)

This is the equation of a conic section. Now suppose that x = Rx′, where x′ = (x′, y′)T and R is a
real orthogonal matrix. The equation of the conic section then becomes

x′TS′x′ = constant, where S′ = RTSR . (4.97)

Now choose R to diagonalize S so that

S′ =
(
λ1 0
0 λ2

)
, (4.98)

where λ1 and λ2 are the eigenvalues of S; from our earlier results in § 4.7.3 we know that such a
matrix can always be found (and wlog detR = 1). The conic section then takes the simple form

λ1x
′2 + λ2y

′2 = constant . (4.99)

The ‘prime’ axes are identical to the eigenvectors of S′, and hence in terms of the ‘prime’ axes the
normalised eigenvectors of S′ are

e′ 1 =
(

1
0

)
and e′ 2 =

(
0
1

)
, (4.100)

with eigenvalues λ1 and λ2 respectively. Axes that coincide with the eigenvectors are known as
principal axes. In the terms of the original axes, the principal axes are given by ei = Re′ i (i = 1, 2).

Interpretation. If λ1λ2 > 0 then (4.99) is the equation for an ellipse with principal axes coinciding
with the x′ and y′ axes.

Scale. The scale of the ellipse is determined by the constant on the right-hand-side of (4.94)
(or (4.99)).

Orientation. The orientation of the ellipse is determined by the eigenvectors of S.
Shape. The shape of the ellipse is determined by the eigenvalues of S.

In the degenerate case, λ1 = λ2, the ellipse becomes a circle with no preferred principal axes.
Any two linearly independent vectors may be chosen as the principal axes, which are no longer
necessarily orthogonal but can be be chosen to be so.

If λ1λ2 < 0 then (4.99) is the equation for a hyperbola with principal axes coinciding with
the x′ and y′ axes. Similar results to above hold for the scale, orientation and shape.

Quadric Surfaces. For a real 3× 3 symmetric matrix S, the equation

xTSx = k , (4.101)

where k is a constant, is called a quadric surface. After a rotation of axes such that S → S′ = Λ, a
diagonal matrix, its equation takes the form

λ1x
′2 + λ2y

′2 + λ3z
′2 = k . (4.102)
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The axes in the new ‘prime’ coordinate system are again known as principal axes, and the eigen-
vectors of S′ (or S) are again aligned with the principal axes. We note that when λik > 0,

the distance to surface along the ith principal axes =
√

k

λi
. (4.103)

Special Cases.

• In the case of metric matrices we know that S is positive definite, and hence that λ1, λ2 and
λ3 are all positive. The quadric surface is then an ellipsoid

• If λ1 = λ2 then we have a surface of revolution about the z′ axis.

• If λ1 = λ2 = λ3 we have a sphere.

• If λ3 → 0 then we have a cylinder.

• If λ2, λ3 → 0, then we recover the planes x′ = ±
√

k
λ1

.
15/02

4.8.2 The Stationary Properties of the Eigenvalues

Suppose that we have an orthonormal basis, and let
x be a point on xTSx = k where k is a constant. Then
from (4.55) the distance squared from the origin to
the quadric surface is xTx. This distance naturally
depends on the value of k, i.e. the scale of the surface.
This dependence on k can be removed by considering
the square of the relative distance to the surface, i.e.

(relative distance to surface)2 =
xTx

xTSx
. (4.104)

Let us consider the directions for which this relative distance, or equivalently its inverse

λ(x) =
xTSx

xTx
, (4.105)

is stationary. We can find the so-called first variation in λ(x) by letting

x → x + δx and xT → xT + δxT , (4.106)

by performing a Taylor expansion, and by ignoring terms quadratic or higher in |δx|. First note that

(xT + δxT)(x + δx) = xTx + xTδx + δxTx + . . .

= xTx + 2δxTx + . . . . since the transpose of a scalar is itself

Hence

1
(xT + δxT)(x + δx)

=
1

xTx + 2δxTx + . . .

=
1

xTx

(
1 +

2δxTx

xTx
+ . . .

)−1

=
1

xTx

(
1− 2δxTx

xTx
+ . . .

)
.

Similarly

(xT + δxT)S(x + δx) = xTSx + xTSδx + δxTSx + . . .

= xTSx + 2δxTSx + . . . . since ST = S
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Putting the above results together we have that

δλ(x) =
(xT + δxT)S(x + δx)
(xT + δxT)(x + δx)

− xTSx

xTx

=
xTSx + 2δxTSx + . . .

xTx

(
1− 2δxTx

xTx
+ . . .

)
− xTSx

xTx

=
2δxTSx

xTx
− xTSx

xTx

2δxTx

xTx
+ . . .

=
2

xTx

(
δxTSx− λ(x)δxTx

)
=

2
xTx

δxT (Sx− λ(x)x) . (4.107)

Hence the first variation is zero for all possible δx
when

Sx = λ(x)x , (4.108)

i.e. when x is an eigenvector of S and λ is the associ-
ated eigenvalue. So the eigenvectors of S are the di-
rections which make the relative distance (4.104) sta-
tionary, and the eigenvalues are the values of (4.105)
at the stationary points.

By a similar argument one can show that the eigenvalues of an Hermitian matrix, H, are the values of
the function

λ(x) =
x†Hx

x†x
(4.109)

at its stationary points.

4.9 Mechanical Oscillations (Unlectured: See Easter Term Course)

4.9.0 Why Have We Studied Hermitian Matrices, etc.?

The above discussion of quadratic forms, etc. may have appeared rather dry. There is a nice application
concerning normal modes and normal coordinates for mechanical oscillators (e.g. molecules). If you are
interested read on, if not wait until the first few lectures of the Easter term course where the following
material appears in the schedules.

4.9.1 Governing Equations

Suppose we have a mechanical system described by coordinates q1, . . . , qn, where the qi may be distances,
angles, etc. Suppose that the system is in equilibrium when q = 0, and consider small oscillations about
the equilibrium. The velocities in the system will depend on the q̇i, and for small oscillations the velocities
will be linear in the q̇i, and total kinetic energy T will be quadratic in the q̇i. The most general quadratic
expression for T is

T =
∑

i

∑
j

aij q̇iq̇j = q̇TAq̇ . (4.110)

Since kinetic energies are positive, A should be positive definite. We will also assume that, by a suitable
choice of coordinates, A can be chosen to be symmetric.

Consider next the potential energy, V . This will depend on the coordinates, but not on the velocities,
i.e. V ≡ V (q). For small oscillations we can expand V about the equilibrium position:

V (q) = V (0) +
∑

i

qi
∂V

∂qi
(0) + 1

2

∑
i

∑
j

qiqj
∂2V

∂qi∂qj
(0) + . . . . (4.111)
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Normalise the potential so that V (0) = 0. Also, since the system is in equilibrium when q = 0, we require
that there is no force when q = 0. Hence

∂V

∂qi
(0) = 0 . (4.112)

Hence for small oscillations we may approximate (4.111) by

V =
∑

i

∑
j

bijqiqj = qTBq . (4.113)

We note that if the mixed derivatives of V are equal, then B is symmetric. Assume next that there are
no dissipative forces so that there is conservation of energy. Then we have that

d
dt

(T + V ) = 0 . (4.114)

In matrix form this equation becomes, after using the symmetry of A and B,

0 =
d
dt

(T + V ) = q̈TAq̇ + q̇TAq̈ + q̇TBq + qTBq̇

= 2q̇T (Aq̈ + Bq) . (4.115)

We will assume that the solution of this matrix equation that we need is the one in which the coefficient
of each q̇i is zero, i.e. we will require

Aq̈ + Bq = 0 . (4.116)

15/01

4.9.2 Normal Modes

We will seek solutions to (4.116) that all oscillate with the same frequency, i.e. we seek solutions

q = x cos(ωt+ φ) , (4.117)

where φ is a constant. Substituting into (4.116) we find that

(B− ω2A)q = 0 , (4.118)

or, on the assumption that A is invertible,

(A−1B− ω2I)q = 0 . (4.119)

Thus the solutions ω2 are the eigenvalues of A−1B, and are referred to as eigenfrequencies or normal
frequencies. The eigenvectors are referred to as normal modes, and in general there will be n of them.

4.9.3 Normal Coordinates

We have seen how, for a quadratic form, we can change coordinates so that the matrix for a particular
form is diagonalized. We assert, but do not prove, that a transformation can be found that simultaneously
diagonalizes A and B, say to M and N. The new coordinates, say u, are referred to as normal coordinates.
In terms of them the kinetic and potential energies become

T =
∑

i

µiu̇
2
i = u̇TMu̇ and V =

∑
i

νiu
2
i = uTNu (4.120)

respectively, where

M =


µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...
0 0 · · · µn

 and N =


ν1 0 · · · 0
0 ν2 · · · 0
...

...
. . .

...
0 0 · · · νn

 . (4.121)

The equations of motion are then the uncoupled equations

µiüi + νiui = 0 (i = 1, . . . , n). (4.122)
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4.9.4 Example

Consider a system in which three particles of mass m, µm and m are connected in a straight line by
light springs with a force constant k (cf. an idealised model of CO2).20

The kinetic energy of the system is then

T = 1
2 (mx2

1 + µmx2
2 +mx2

3) , (4.123a)

while the potential energy stored in the springs is

V = 1
2k((x2 − x1)2 + (x3 − x2)2) . (4.123b)

The kinetic and potential energy matrices are thus

A = 1
2m

 1 0 0
0 µ 0
0 0 1

 and B = 1
2k

 1 −1 0
−1 2 −1

0 −1 1

 , (4.124)

respectively. In order to find the normal frequencies we therefore need to find the roots to ‖B−ω2A‖ = 0
(see (4.118)), i.e. we need the roots to∥∥∥∥∥∥

1− λ −1 0
−1 2− µλ −1
0 −1 1− λ

∥∥∥∥∥∥ = λ(1− λ)(µλ− (µ+ 2)) = 0 , (4.125)

where λ = mω2/k. The eigenfrequencies are thus

ω1 = 0 , ω2 =
(
k

m

) 1
2

, ω3 =
(
k

m

) 1
2
(

1 +
2
µ

) 1
2

, (4.126)

with corresponding (non-normalised) eigenvectors

x1 =

 1
1
1

 , x2 =

 1
0
−1

 , x3 =

 1
−2/µ

1

 . (4.127)

Remark. Note that the centre of mass of the system is at rest in the case of x2 and x3.

20 See Riley, Hobson & Bence (1997).
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5 Elementary Analysis

5.0 Why Study This?

Analysis is one of the foundations upon which mathematics is built. At some point you ought to at least
inspect the foundations! Also, you need to have an idea of when, and when not, you can sum a series,
e.g. a Fourier series.

5.1 Sequences and Limits

5.1.1 Sequences

A sequence is a set of numbers occurring in order. If the sequence is unending we have an infinite
sequence.

Example. If the nth term of a sequence is sn = 1
n , the sequence is

1, 1
2 ,

1
3 ,

1
4 , . . . . (5.1)

5.1.2 Sequences Tending to a Limit, or Not.

Sequences tending to a limit. A sequence, sn, is said to tend to the limit s if, given any positive ε, there
exists N ≡ N(ε) such that

|sn − s| < ε for all n > N . (5.2a)

We then write
lim

n→∞
sn = s . (5.2b)

Example. Suppose sn = xn with |x| < 1. Given 0 < ε < 1 let N(ε) be the smallest integer such
that, for a given x,

N >
log 1/ε
log 1/|x|

. (5.3)

Then, if n > N ,
|sn − 0| = |x|n < |x|N < ε . (5.4a)

Hence
lim

n→∞
xn = 0 . (5.4b)

Property. An increasing sequence tends either to a limit or to +∞. Hence a bounded increasing
sequence tends to a limit, i.e. if

sn+1 > sn , and sn < K ∈ R for all n, then s = lim
n→∞

sn exists. (5.5)

Remark. You really ought to have a proof of this property, but I do not have time.21

Sequences tending to infinity. A sequence, sn, is said to tend to infinity if given any A (however large),
there exists N ≡ N(A) such that

sn > A for all n > N . (5.6a)

We then write
sn →∞ as n→∞ . (5.6b)

Similarly we say that sn → −∞ as n→∞ if given any A (however large), there exists N ≡ N(A)
such that

sn < −A for all n > N . (5.6c)

Oscillating sequences. If a sequence does not tend to a limit or ±∞, then sn is said to oscillate. If sn

oscillates and is bounded, it oscillates finitely, otherwise it oscillates infinitely.

21 Alternatively you can view this property as an axiom that specifies the real numbers R essentially uniquely.
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5.2 Convergence of Infinite Series

5.2.1 Convergent Series

Given an infinite sequence of numbers u1, u2, . . . , define the partial sum sn by

sn =
n∑

r=1

ur . (5.7)

If as n→∞, sn tends to a finite limit, s, then we say that the infinite series

∞∑
r=1

ur , (5.8)

converges (or is convergent), and that s is its sum.

Example: the convergence of a geometric series. The series

∞∑
r=0

xr = 1 + x+ x2 + x3 + . . . , (5.9)

converges to (1− x)−1 provided that |x| < 1.

Answer. Consider the partial sum

sn = 1 + x+ · · ·+ xn−1 =
1− xn

1− x
. (5.10)

If |x| < 1, then from (5.4b) we have that xn → 0 as n→∞, and hence

s = lim
n→∞

sn =
1

1− x
for |x| < 1. (5.11)

However if |x| > 1 the series diverges.

5.2.2 A Necessary Condition for Convergence

A necessary condition for s to converge is that ur → 0 as r →∞.

Proof. Using the fact that ur = sr − sr−1 we have that

lim
r→∞

ur = lim
r→∞

(sr − sr−1) = lim
r→∞

sr − lim
r→∞

sr−1 = s− s = 0 . (5.12)

However, as we are about to see with the example ur = 1
r (see (5.13) and (5.14)), ur → 0 as r → ∞ is

not a sufficient condition for convergence.

5.2.3 Divergent Series

An infinite series which is not convergent is called divergent.

Example. Suppose that

ur =
1
r

so that sn =
n∑

r=1

1
r

= 1 + 1
2 + 1

3 · · ·+
1
n . (5.13)
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Consider s2m where m is an integer. First we note that

m = 1 : s2 = 1 + 1
2

m = 2 : s4 = s2 + 1
3 + 1

4 > s2 + 1
4 + 1

4 = 1 + 1
2 + 1

2

m = 3 : s8 = s4 + 1
5 + 1

6 + 1
7 + 1

8 > s4 + 1
8 + 1

8 + 1
8 + 1

8 > 1 + 1
2 + 1

2 + 1
2 .

Similarly we can show that (e.g. by induction)

s2m > 1 + m
2 , (5.14)

and hence the series is divergent.

5.2.4 Absolutely Convergent Series

A series
∑
ur is said to converge absolutely if

∞∑
r=1

|ur| (5.15)

converges, otherwise any convergence of the series is said to be conditional.

Example. Suppose that

ur = (−1)r−1 1
r

so that sn =
n∑

r=1

(−1)r−1 1
r

= 1− 1
2 + 1

3 · · ·+ (−1)n−1 1
n . (5.16)

Then, from the Taylor expansion

log(1 + x) = −
∞∑

r=1

(−x)r

r
, (5.17)

we spot that s = limn→∞ sn = log 2; hence
∑∞

r=1 ur converges. However, from (5.13) and (5.14)
we already know that

∑∞
r=1 |ur| diverges. Hence

∑∞
r=1 ur is conditionally convergent.

Property. If
∑
|ur| converges then so does

∑
ur (see the Example Sheet for a proof).

5.3 Tests of Convergence

5.3.1 The Comparison Test

If we are given that vr > 0 and

S =
∞∑

r=1

vr (5.18)

is convergent, the infinite series
∑∞

r=1 ur is also convergent if 0 < ur < Kvr for some K independent of r.

Proof. Since ur > 0, sn =
∑n

r=1 ur is an increasing sequence. Further

sn =
n∑

r=1

ur < K
n∑

r=1

vr , (5.19)

and thus

lim
n→∞

sn < K
∞∑

r=1

vr = KS , (5.20)

i.e. sn is an increasing bounded sequence. Thence from (5.5)
∑∞

r=1 ur is convergent.16/01
16/02
16/03
16/04

Remark. Similarly if
∑∞

r=1 vr diverges, vr > 0 and ur > Kvr for some K independent of r, then
∑∞

r=1 ur

diverges.
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5.3.2 D’Alembert’s Ratio Test

Suppose that ur > 0 and that

lim
r→∞

(
ur+1

ur

)
= ρ . (5.21)

Then
∑
ur converges if ρ < 1, while

∑
ur diverges if ρ > 1.

Proof. First suppose that ρ < 1. Choose σ with ρ < σ < 1. Then there exists N ≡ N(σ) such that

ur+1

ur
< σ for all r > N . (5.22)

So

∞∑
r=1

ur =
N∑

r=1

ur + uN+1

{
1 +

uN+2

uN+1
+
uN+2

uN+1

uN+3

uN+2
+ . . .

}

<
N∑

r=1

ur + uN+1(1 + σ + σ2 + . . . ) by hypothesis

<

N∑
r=1

ur +
uN+1

1− σ
by (5.11) since σ < 1. (5.23)

We conclude that
∑∞

r=1 ur is bounded. Thence, since sn =
∑n

r=1 ur is an increasing sequence, it
follows from (5.5) that

∑
ur converges.

Next suppose that ρ > 1. Choose τ with 1 < τ < ρ. Then there exists M ≡M(τ) such that

ur+1

ur
> τ > 1 for all r > M , (5.24a)

and hence
ur

uM
> τ r−M > 1 for all r > M . (5.24b)

Thus, since ur 6→ 0 as r →∞, we conclude that
∑
ur diverges.

5.3.3 Cauchy’s Test

Suppose that ur > 0 and that
lim

r→∞
u1/r

r = ρ . (5.25)

Then
∑
ur converges if ρ < 1, while

∑
ur diverges if ρ > 1.

Proof. First suppose that ρ < 1. Choose σ with ρ < σ < 1. Then there exists N ≡ N(σ) such that

u1/r
r < σ , i.e. ur < σr for all r > N . (5.26)

It follows that

∞∑
r=1

ur <
N∑

r=1

ur +
∞∑

r=N+1

σr . (5.27)

We conclude that
∑∞

r=1 ur is bounded (since σ < 1). Moreover sn =
∑n

r=1 ur is an increasing
sequence, and hence from (5.5) we also conclude that

∑
ur converges.

Next suppose that ρ > 1. Choose τ with 1 < τ < ρ. Then there exists M ≡M(τ) such that

u1/r
r > τ > 1 , i.e. ur > τ r > 1 , for all r > M . (5.28)

Thus, since ur 6→ 0 as r →∞,
∑
ur must diverge.
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5.4 Power Series of a Complex Variable

A power series of a complex variable, z, has the form

f(z) =
∞∑

r=0

arz
r where ar ∈ C . (5.29)

Remark. Many of the above results for real series can be generalised for complex series. For instance, if
the sum of the absolute values of a complex series converges (i.e. if

∑
|ur| converges), then so does

the series (i.e.
∑
ur). Hence if

∑
|arz

r| converges, so does
∑
arz

r.

5.4.1 Convergence of Power Series

If the sum
∑∞

r=0 arz
r converges for z = z1, then it converges absolutely for all z such that |z| < |z1|.

Proof. First we note that

|arz
r| = |arz

r
1 |
∣∣∣∣ zz1
∣∣∣∣r . (5.30)

Also, since
∑
arz

r
1 converges, then from § 5.2.2, arz

r
1 → 0 as r → ∞. Hence for a given ε there

exists N ≡ N(ε) such that if r > N then |arz
r
1 | < ε and

|arz
r| < ε

∣∣∣∣ zz1
∣∣∣∣r if |z| < |z1|. (5.31)

Thus
∑
arz

r converges for |z| < |z1| by comparison with a geometric series.

Corollary. If the sum diverges for z = z1 then it diverges for all z such that |z| > |z1|. For suppose that
it were to converge for some such z = z2 with |z2| > |z1|, then it would converge for z = z1 by the
above result; this is in contradiction to the hypothesis.

5.4.2 Radius of Convergence

The results of § 5.4.1 imply that there exists some circle in the complex z-plane of radius % (possibly 0
or ∞) such that:∑

arz
r converges for |z| < %∑

arz
r diverges for |z| > %

}
|z| = % is the circle of convergence. (5.32)

The real number % is called the radius of convergence. On |z| = % the sum may or may not converge.

5.4.3 Determination of the Radius of Convergence

Let

f(z) =
∞∑

r=0

ur where ur = arz
r . (5.33)

Use D’Alembert’s ratio test. If the limit exists, then

lim
r→∞

∣∣∣∣ar+1

ar

∣∣∣∣ = 1
%
. (5.34)

Proof. We have that

lim
r→∞

∣∣∣∣ur+1

ur

∣∣∣∣ = lim
r→∞

∣∣∣∣ar+1

ar

∣∣∣∣ |z| = |z|
%

by hypothesis.
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Hence the series converges absolutely by D’Alembert’s ratio test if |z| < %. On the other hand if
|z| > %, then

lim
r→∞

∣∣∣∣ur+1

ur

∣∣∣∣ = |z|
%
> 1 . (5.35)

Hence ur 6→ 0 as r → ∞, and so the series does not converge. It follows that % is the radius of
convergence.

Remark. The limit (5.34) may not exist, e.g. if ar = 0 for r odd then
∣∣∣∣ar+1

ar

∣∣∣∣ is alternately 0 or ∞.

Use Cauchy’s test. If the limit exists, then

lim
r→∞

|ar|1/r =
1
%
. (5.36)

Proof. We have that

lim
r→∞

|ur|1/r = lim
r→∞

|ar|1/r|z| = |z|
%

by hypothesis. (5.37)

Hence the series converges absolutely by Cauchy’s test if |z| < %.

On the other hand if |z| > %, choose τ with 1 < τ < |z|/%. Then there exists M ≡M(τ) such that

|ur|1/r > τ > 1 , i.e. |ur| > τ r > 1 , for all r > M .

Thus, since ur 6→ 0 as r →∞,
∑
ur must diverge. It follows that % is the radius of convergence.

5.4.4 Examples

1. Suppose that f(z) is the geometric series

f(z) =
∞∑

r=0

zr .

Then ar = 1 for all r, and hence∣∣∣∣ar+1

ar

∣∣∣∣ = 1 and |ar|1/r = 1 for all r. (5.38)

Hence % = 1 by either D’Alembert’s ratio test or Cauchy’s test, and the series converges for |z| < 1.
In fact

f(z) =
1

1− z
.

Note the singularity at z = 1 which determines the radius of convergence.

2. Suppose that f(z) = −
∞∑

r=1

(−z)r

r
. Then ar =

(−1)r−1

r
, and hence

∣∣∣∣ar+1

ar

∣∣∣∣ = r

r + 1
→ 1 as r →∞ . (5.39)

Hence % = 1 by D’Alembert’s ratio test. As a check we observe that

|ar|1/r =
(

1
r

)1/r

, and log |ar|1/r =
1
r

log
1
r
→ 0 as r →∞ .

Thus
|ar|1/r → 1 as r →∞ , (5.40)

and we confirm by Cauchy’s test that % = 1. In fact the series converges to log(1 + z) for |z| < 1;
the singularity at z = −1 fixes the radius of convergence.
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3. Next suppose f(z) =
∞∑

r=0

zr

r!
. Then ar = 1

r! and

ar+1

ar
=

1
r + 1

→ 0 as r →∞ . (5.41)

Hence % = ∞ by D’Alembert’s ratio test. As a check we observe that

|ar|1/r =
(

1
r!

)1/r

, and log |ar|1/r = −1
r

log r! .

But Stirling’s formula gives that

log r! ∼ r log r + 1
2 log r − r + . . . as r →∞ ,

and so
log |ar|1/r → − log r → −∞ as r →∞ .

Thus
|ar|

1
r → 0 as r →∞ , (5.42)

and we confirm by Cauchy’s test that % = ∞. In fact the series converges to ez for all finite z.

4. Finally suppose f(z) =
∞∑

r=0

r!zr. Then ar = r! and

ar+1

ar
= r + 1 →∞ as r →∞ . (5.43)

Hence % = 0 by D’Alembert’s ratio test. As a check we observe, using Stirling’s formula, that

|ar|1/r = (r!)1/r
, and log |ar|1/r =

1
r

log r! ∼ log r →∞ as r →∞ ,

and so
|ar|1/r →∞ as r →∞ . (5.44)

Thus we confirm by Cauchy’s test this series has zero radius of convergence; it fails to define the
function f(z) for any non-zero z.

5.4.5 Analytic Functions

A function f(z) is said to be analytic at z = z0 if it has Taylor series expansion about z = z0 with a
non-zero radius of convergence, i.e. f(z) is analytic at z = z0 if for some % > 0

f(z) =
∞∑

r=0

ar(z − z0)r for |z − z0| < % . (5.45a)

The coefficients of the Taylor series can be evaluated by dif-
ferentiating (5.45a) n times and then evaluating the result at
z = z0, whence

an =
1
n!

dnf

dzn
(z0) . (5.45b)

5.4.6 The O Notation

Suppose that f(z) and g(z) are functions of z. Then

if f(z)/g(z) is bounded as z → 0 we say that f(z) = O(g(z));

if f(z)/g(z) → 0 as z → 0 we say that f(z) = o(g(z)).
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Example. As x→ 0 we have that

sinx = O(1) since sinx/1 is bounded as x→ 0;
sinx = o(1) since sinx/1 → 0 as x→ 0;
sinx = O(x) since sinx/x is bounded as x→ 0.

Remark. The O notation is often used in conjunction with truncated Taylor series, e.g. for small (z− z0)

f(z) = f(z0) + (z − z0)f ′(z0) + 1
2 (z − z0)2f ′′(z0) +O((z − z0)3) . (5.46)

17/02
17/04

5.5 Integration

You have already encountered integration as both

• the inverse of differentiation, and

• some form of of summation.

The aim of this part of the course is to emphasize that these two definitions are equivalent for continuous
functions.

5.5.1 Why Do We Have To Do This Again?

You already know the ‘definition’∫ b

a

f(t)dt = lim
N→∞

N∑
j=1

f(a+ jh)h where h = (b− a)/N , (5.47)

so why are mathematicians not really content with it?

One answer is that while (5.47) is OK for OK functions,
consider Dirichlet’s function

f =
{

0 on irrationals,
1 on rationals. (5.48)

If

• a = 0 and b = π, then (5.47) evaluates to 0,

• a = 0 and b = p/q, where p/q is a rational ap-
proximation to π (e.g. 22/7 or better), then (5.47)
evaluates to p/q.

Since we can choose p/q to be arbitrarily close to π we would appear to have a problem.22 We conclude
that we need a better definition of an integral. In particular

• we need a better way of dividing up [a, b];

• we need to be more precise about the limit as the subdivisions tend to zero.
17/01
17/03 22 In fact Dirichlet’s function is not Riemann integrable, so this example is a bit of a cheat.
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5.5.2 The Riemann Integral

Dissection. A dissection, partition or subdivision D
of the interval [a, b] is a finite set of points
t0, . . . , tN such that

a = t0 < t1 < . . . < tN = b .

Modulus. Define the modulus, gauge or norm of a
dissection D, written |D|, to be the length of
the longest subinterval (tj − tj−1) of D, i.e.

|D| = max
16j6N

|tj − tj−1| . (5.49a)

Riemann Sum. A Riemann sum, σ(D, ζ), for a bounded function f(t) is any sum

σ(D, ζ) =
N∑

j=1

f(ζj)(tj − tj−1) where ζj ∈ [tj−1, tj ] . (5.49b)

Note that if the subintervals all have the same length so that tj = (a+ jh) and tj − tj−1 = h where
h = (tN − t0)/N , and if we take ζj = tj , then (cf. (5.47))

σ(D, ζ) =
N∑

j=1

f(a+ jh)h . (5.49c)

Integrability. A bounded function f(t) is integrable if there exists I ∈ R such that

lim
|D|→0

σ(D, ζ) = I , (5.49d)

where the limit of the Riemann sum must exist independent of the dissection (subject to the
condition that |D| → 0) and independent of the choice of ζ for a given dissection D.23

Definite Integral. For an integrable function f the Riemann definite integral of f over the interval [a, b]
is defined to be the limiting value of the Riemann sum, i.e.∫ b

a

f(t) dt = I . (5.49e)

Remark. An integral should be thought of as the limiting value of a sum, not as the area under a
curve. Of course this is not to say that integrals are not a handy way of calculating the areas
under curves.

Example. Suppose that f(t) = c, where c is a real constant. Then from (5.49b)

σ(D, ζ) =
N∑

j=1

c(tj − tj−1) = c(b− a) , (5.50a)

whatever the choice of D and ζ. Hence the required limit in (5.49d) exists. We conclude that
f(t) = c is integrable, and that ∫ b

a

cdt = c(b− a) . (5.50b)

23 More precisely, f is integrable if given ε > 0, there exists I ∈ R and δ > 0 such that whatever the choice of ζ for a
given dissection D

|σ(D, ζ)− I| < ε when |D| < δ .

Note that this is far more restrictive than saying that the sum (5.49c) converges as h → 0.
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Remark. Proving integrability using (5.49d) is in general non trivial (since there are a rather large
number of dissections and sample points ζ to consider).24 However if we know that a function is
integrable then the limit (5.49d) needs only to be evaluated once, i.e. for a limiting dissection and
sample points of our choice (usually those that make the calculation easiest).

5.5.3 Properties of the Riemann Integral

Using (5.49d) and (5.49e) it is possible to show for integrable functions f and g, a < c < b, and k ∈ R,
that ∫ b

a

f(t) dt = −
∫ a

b

f(t) dt , (5.51a)∫ b

a

f(t) dt =
∫ c

a

f(t) dt+
∫ b

c

f(t) dt , (5.51b)∫ b

a

kf(t) dt = k

∫ b

a

f(t) dt , (5.51c)∫ b

a

(f(t) + g(t)) dt =
∫ b

a

f(t) dt+
∫ b

a

g(t) dt , (5.51d)∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ 6
∫ b

a

|f(t)| dt . (5.51e)

It is also possible to deduce that if f and g are integrable then so if fg.

Schwarz’s Inequality. For integrable functions f and g (cf. (4.31))(∫ b

a

fg dt

)2

6

(∫ b

a

f2dt

)(∫ b

a

g2dt

)
. (5.52)

Proof. Using the above properties it follows that

0 6
∫ b

a

(λf + g)2dt = λ2

∫ b

a

f2dt+ 2λ
∫ b

a

fg dt+
∫ b

a

g2dt . (5.53)

• If
∫ b

a
f2dt = 0 then

2λ
∫ b

a

fg dt+
∫ b

a

g2dt > 0 .

This can only be true for all λ if
∫ b

a
fg dt = 0; the [in]equality follows.

• If
∫ b

a
f2dt 6= 0 then choose (cf. the proof of (4.31))

λ = −

∫ b

a

fg dt∫ b

a

f2dt
, (5.54)

and the inequality again follows.

Remark. This will not be the last time that we will find an analogy between scalar/inner products
and integrals.

24 As you might guess, there is a better way to do it.

Natural Sciences Tripos: IB Mathematical Methods I 86 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2004



5.5.4 The Fundamental Theorems of Calculus

Suppose f is integrable. Define

F (x) =
∫ x

a

f(t) dt . (5.55)

F is continuous. F is a continuous function of x since

|F (x+ h)− F (x)| =

∣∣∣∣∣
∫ x+h

x

f(t) dt

∣∣∣∣∣
6
∫ x+h

x

|f(t)|dt

6

(
max

x6t6x+h
|f(t)|

)
h ,

and hence

lim
h→0

|F (x+ h)− F (x)| = 0 .

The First Fundamental Theorem of Calculus. This states that

dF
dx

=
d
dx

(∫ x

a

f(t) dt
)

= f(x) , (5.56)

i.e. the derivative of the integral of a function is the function.

Proof. Suppose that
m = min

x6t6x+h
f(t) and M = max

x6t6x+h
f(t) .

We can show from the definition of a Riemann integral that
for h > 0

mh 6
∫ x+h

x

f(t) dt 6 Mh ,

so

m 6
F (x+ h)− F (x)

h
6 M .

But if f is continuous, then as h → 0 both m and M tend
to f(x). We can similarly ‘sandwich’ (F (x+ h)− F (x))/h if
h < 0. (5.56) then follows from the definition of a derivative.

The Second Fundamental Theorem of Calculus. This essentially states that the integral of the derivative
of a function is the function, i.e. if g is differentiable then∫ x

a

dg
dt

dt = g(x)− g(a) . (5.57)

Proof. Define f(x) by

f(x) =
dg
dx

(x) ,

and then define F as in (5.55). Then using (5.56) we have that

d
dx

(F − g) = 0 .
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Hence from integrating and using the fact that F (a) = 0 from (5.55),

F (x)− g(x) = −g(a) .

Thus using the definition (5.55) ∫ x

a

dg
dt

dt = g(x)− g(a) . (5.58)

The Indefinite Integral. Let f be integrable, and suppose f = F ′(x) for some function F . Then, based
on the observation that the lower limit a in (5.55), etc. is arbitrary, we define the indefinite integral
of f by ∫ x

f(t) dt = F (x) + c (5.59)

for any constant c.
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6 Ordinary Differential Equations

6.0 Why Study This?

Numerous scientific phenomena are described by differential equations. This section is about extending
your armoury for solving ordinary differential equations, such as those that arise in quantum mechan-
ics and electrodynamics. In particular we will study a sub-class of ordinary differential equations of
‘Sturm-Liouville’ type. In addition we will consider eigenvalue problems for ‘Sturm-Liouville’ operators.
In subsequent courses you will learn that such eigenvalues fix, say, the angular momentum of electrons
in an atom.

6.1 Second-Order Linear Ordinary Differential Equations

The general second-order linear ordinary differential equation (ODE) for y(x) can, wlog, be written as

y′′ + p(x)y′ + q(x)y = f(x) . (6.1)

If f(x) = 0 the equation is said to be homogeneous, otherwise it is said to be inhomogeneous.

6.2 Homogeneous Second-Order Linear ODEs

If f = 0 then any two solutions of
y′′ + py′ + qy = 0 , (6.2)

can be superposed to give a third, i.e. if y1 and y2 are two solutions then for α, β ∈ R another solution is

y = αy1 + βy2 . (6.3)

Further, suppose that y1 and y2 are two linearly independent solutions, where by linearly independent
we mean, as in (4.3), that

αy1(x) + βy2(x) ≡ 0 ⇒ α = β = 0 . (6.4)

Then since (6.2) is second order, the general solution of (6.2) will be of the form (6.3); the parameters
α and β can be viewed as the two integration constants. This means that in order to find the general
solution of a second order linear homogeneous ODE we need to find two linearly-independent solutions.

Remark. If y1 and y2 are linearly dependent, then y2 = γy1 for some γ ∈ R, in which case (6.3) becomes

y = (α+ βγ)y1 , (6.5)

and we have, in effect, a solution with only one integration constant σ = (α+ βγ).

6.2.1 The Wronskian

If y1 and y2 are linearly dependent, then so are y′1 and y′2 (since if y2 = γy1 then from differentiating
y′2 = γy′1). Hence y1 and y2 are linearly dependent only if the equation(

y1 y2
y′1 y′2

)(
α
β

)
= 0 , (6.6)

has a non-zero solution. Conversely, if this equation has a solution then y1 and y2 are linearly dependent.

It follows that non-zero functions y1 and y2 are linearly independent if and only if(
y1 y2
y′1 y′2

)(
α
β

)
= 0 ⇒ α = β = 0 . (6.7)
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Since Ax = 0 only has a zero solution if and only if det A 6= 0, we conclude that y1 and y2 are linearly
independent if and only if ∥∥∥∥ y1 y2

y′1 y′2

∥∥∥∥ = y1y
′
2 − y2y

′
1 6= 0 . (6.8)

The function,
W (x) = y1y

′
2 − y2y

′
1 , (6.9)

is called the Wronskian of the two solutions. To recap: if W is non-zero then y1 and y2 are linearly
independent.

6.2.2 The Calculation of W

We can derive a differential equation for the Wronskian, since

W ′ = y1y
′′
2 − y′′1 y2 from (6.9) since the y′1y

′
2 terms cancel

= −y1(py′2 + qy2) + (py′1 + qy1)y2 using equation (6.2)
= −p(y1y′2 − y′1y2) since the qy1y2 terms cancel
= −pW from definition (6.9). (6.10)

This is a first-order equation for W , viz.

W ′ + p(x)W = 0 , (6.11)

with solution

W (x) = κ exp
(
−
∫ x

p(ζ) dζ
)
, (6.12)

where κ is a constant (a change in lower limit of integration can be absorbed by a rescaling of κ).

Remark. If for one value of x we have that W 6= 0, then W is non-zero for all values of x (since
expx > 0 for all x). Hence if y1 and y2 are linearly independent for one value of x, they are linearly
independent for all values of x. In the case that y1 and y2 are known implicitly, e.g. in terms of
series or integrals, this is a welcome result since it means that we just have to find one value of x
where is it relatively easy to evaluate W in order to confirm (or otherwise) linear independence. 18/02

6.2.3 A Second Solution via the Wronskian

Suppose that we already have one solution, say y1, to the homogeneous equation. Then we can calculate
a second linearly independent solution using the Wronskian as follows.

First, from the definition of the Wronskian (6.9)

y1y
′
2 − y′1y2 = W (x) . (6.13)

Hence from dividing by y2
1 (

y2
y1

)′
=
y′2
y1
− y2y

′
1

y2
1

=
W

y2
1

.

Now integrate both sides and use (6.12) to obtain

y2(x) = y1(x)
∫ x W (η)

y2
1(η)

dη

= y1(x)
∫ x κ

y2
1(η)

exp
(
−
∫ η

p(ζ) dζ
)

dη . (6.14)

In principle this allows us to compute y2 given y1. 18/04
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Example. Given that y1(x) is a solution of Bessel’s equation of zeroth order,

y′′ +
1
x
y′ + y = 0 , (6.15)

find another independent solution in terms of y1 for x > 0.

Answer. In this case p(x) = 1/x and hence

y2(x) = y1(x)
∫ x κ

y2
1(η)

exp
(
−
∫ η 1

ζ
dζ
)

dη

= κy1(x)
∫ x 1

η y2
1(η)

dη . (6.16)

18/03

6.3 Taylor Series Solutions

It is useful now to generalize to complex functions y(z) of a complex variable z. The homogeneous ODE
(6.2) then becomes

y′′ + p(z)y′ + q(z)y = 0 . (6.17)

If p and q are analytic at z = z0 (i.e. they have power series expansions (5.45a) about z = z0), then
z = z0 is called an ordinary point of the ODE. A point at which p and/or q is singular, i.e. a point at
which p and/or q or one of its derivatives is infinite, is called a singular point of the ODE.

6.3.1 The Solution at Ordinary Points in Terms of a Power Series

If z = z0 is an ordinary point of the ODE for y(z), then we claim that
y(z) is analytic at z = z0, i.e. there exists % > 0 for which (see (5.45a))

y =
∞∑

n=0

an(z − z0)n when |z − z0| < % . (6.18a)

For simplicity we will assume henceforth wlog that z0 = 0 (which corre-
sponds to a shift in the origin of the z-plane). Then we seek a solution of
the form

y =
∞∑

n=0

anz
n . (6.18b)

18/01

Next we substitute (6.18b) into the governing equation (6.17) to obtain

∞∑
n=6 02

n(n− 1)anz
n−2 +

∞∑
n=6 01

nanp(z)zn−1 +
∞∑

n=0

anq(z)zn = 0 ,

or, after the substitution k = n− 2 and ` = n− 1 in the first and second terms respectively,

∞∑
k=0

(k + 2)(k + 1)ak+2z
k +

∞∑
`=0

(`+ 1)a`+1p(z)z` +
∞∑

n=0

anq(z)zn = 0 . (6.19)

At an ordinary point p(z) and q(z) are analytic so we can write

p(z) =
∞∑

m=0

pmz
m and q(z) =

∞∑
m=0

qmz
m . (6.20)

Then, after the substitutions k → r and `→ n, (6.19) can be written as

∞∑
r=0

(r + 2)(r + 1)ar+2z
r +

∞∑
n=0

∞∑
m=0

(
(n+ 1)an+1pm + anqm

)
zn+m = 0 . (6.21)
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We now want to rewrite the double sum to include powers
like zr. Hence let r = n+m and then note that (cf. a
change of variables in a double integral)

∞∑
n=0

∞∑
m=0

•(n,m) =
∞∑

r=0

r∑
n=0

•(n, r − n) , (6.22)

since m = r − n > 0. Hence (6.21) can be rewritten as

∞∑
r=0

(
(r + 2)(r + 1)ar+2 +

r∑
n=0

(
(n+ 1)an+1pr−n + anqr−n

))
zr = 0 . (6.23)

Since this expression is true for all |z| < %, each coefficient of zr (r = 0, 1, . . . ) must be zero. Thus we
deduce the recurrence relation

ar+2 = − 1
(r + 2)(r + 1)

r∑
n=0

(
(n+ 1)an+1pr−n + anqr−n

)
for r > 0 . (6.24)

Therefore ar+2 is determined in terms of a0, a1, . . . , ar+1. This means that if a0 and a1 are known then
so are all the ar; a0 and a1 play the rôle of the two integration constants in the general solution.

Remark. Proof that the radius of convergence of (6.18b) is non-zero is more difficult, and we will not
attempt such a task in general. However we shall discuss the issue for examples.

6.3.2 Example

Consider
y′′ − 2

(1− z)2
y = 0 . (6.25)

z = 0 is an ordinary point so try

y =
∞∑

n=0

anz
n . (6.26)

We note that

p = 0 , q = − 2
(1− z)2

= −2
∞∑

m=0

(m+ 1)zm , (6.27)

and hence in the terminology of the previous subsection pm = 0 and qm = −2(m+ 1). Substituting into
(6.24) we obtain the recurrence relation

ar+2 =
2

(r + 2)(r + 1)

r∑
n=0

an(r − n+ 1) for r > 0 . (6.28)

However, with a small amount of forethought we can obtain a simpler, if equivalent, recurrence relation.
First multiply (6.25) by (1− z)2 to obtain

(1− z)2y′′ − 2y = 0 ,

and then substitute (6.26) into this equation. We find, on expanding (1− z)2 = 1− 2z + z2, that

∞∑
n=6 02

n(n− 1)anz
n−2 − 2

∞∑
n=6 01

n(n− 1)anz
n−1 +

∞∑
n=0

(n2 − n− 2)anz
n = 0 ,

after the substitution k = n− 2 and ` = n− 1 in the first and second terms respectively,

∞∑
k=0

(k + 2)(k + 1)ak+2z
k − 2

∞∑
`=0

(`+ 1)`a`+1z
` +

∞∑
n=0

(n+ 1)(n− 2)anz
n = 0 .
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Then after the substitutions k → n and `→ n, we group powers of z to obtain

∞∑
n=0

(n+ 1) ((n+ 2)an+2 − 2nan+1 + (n− 2)an) zn = 0 ,

which leads to the recurrence relation

an+2 =
1

n+ 2
(2nan+1 − (n− 2)an) for n > 0 . (6.29)

This two-term recurrence relation again determines an for n > 2 in terms of a0 and a1, but is simpler
than (6.28).

Exercise for those with time! Show that the recurrence relations (6.28) and (6.29) are equivalent.

Two solutions. For n = 0 the recurrence relation (6.29) yields a2 = a0, while for n = 1 and n = 2 we
obtain

a3 = 1
3 (2a2 + a1) and a4 = a3 . (6.30)

First we note that if 2a2 + a1 = 0, then a3 = a4 = 0, and hence an = 0 for n > 3. We thus have as
our first solution (with a0 = α 6= 0)

y1 = α(1− z)2 . (6.31a)

Next we note that an = a0 for all n is a solution of (6.29). In this case we can sum the series to
obtain (with a0 = β 6= 0)

y2 = β
∞∑

n=0

zn =
β

1− z
. (6.31b)

Linear independence. The linear independence of (6.31a) and (6.31b) is clear. However, to be extra sure
we calculate the Wronskian:

W = y1y
′
2 − y′1y2 = α(1− z)2

β

(1− z)2
+ 2α(1− z)

β

(1− z)
= 3αβ 6= 0 . (6.32)

Hence the general solution is

y(z) = α(1− z)2 +
β

1− z
, (6.33)

for constants α and β. Observe that the general solution is singular at z = 1, which is also a singular
point of the equation since q(z) = −2(1− z)−2 is singular there.

6.3.3 Example: Legendre’s Equation

Legendre’s equation is

y′′ − 2z
1− z2

y′ +
`(`+ 1)
1− z2

y = 0 , (6.34)

where ` ∈ R. The points z = ±1 are singular points but z = 0 is an ordinary point, so for smallish z try

y =
∞∑

n=0

anz
n . (6.35)

On substituting this into (1− z2) ∗ (6.34) we obtain

∞∑
n=6 02

n(n− 1)anz
n−2 −

∞∑
n=0

n(n− 1)anz
n − 2

∞∑
n=0

nanz
n +

∞∑
n=0

`(`+ 1)anz
n = 0 .

Hence with k = n− 2 in the first sum

∞∑
k=0

(k + 2)(k + 1)ak+2z
k −

∞∑
n=0

(n(n+ 1)− `(`+ 1)) anz
n = 0 ,
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and thence after the transformation k → n

∞∑
n=0

((n+ 2)(n+ 1)an+2 − (n(n+ 1)− `(`+ 1)) an) zn = 0 .

This implies that

an+2 =
n(n+ 1)− `(`+ 1)

(n+ 1)(n+ 2)
an for n = 0, 1, 2, . . . . (6.36)

Two solutions can be constructed by choosing

• a0 = 1 and a1 = 0, so that

y1 = 1− `(`+ 1)
2

z2 +O(z4) ; (6.37a)

• a0 = 0 and a1 = 1, so that

y2 = z +
2− `(`+ 1)

6
z3 +O(z5) . (6.37b)

The Wronskian at the ordinary point z = 0 is thus given by

W = y1y
′
2 − y′1y2 = 1 · 1− 0 · 0 = 1 . (6.38)

Since W 6= 0, y1 and y2 are linearly independent.

Radius of convergence. The series (6.37a) and (6.37b) are effectively power series in z2 rather than z.
Hence to find the radius of convergence we either need to re-express our series (e.g. z2 → y and
a2n → bn), or use a slightly modified D’Alembert’s ratio test. We adopt the latter approach and
observe from (6.36) that

lim
n→∞

∣∣∣∣an+2z
n+2

anzn

∣∣∣∣ = lim
n→∞

∣∣∣∣n(n+ 1)− `(`+ 1)
(n+ 1)(n+ 2)

∣∣∣∣ |z|2 = |z|2 . (6.39)

It then follows from a straightforward extension of D’Alembert’s ratio test (5.21) that the series
converges for |z| < 1. Moreover, the series diverges for |z| > 1 (since anz

n 6→ 0), and so the radius
of convergence % = 1. On the radius of convergence, determination of whether the series converges
is more difficult.

Remark. The radius of convergence is distance to nearest singularity of the ODE. This is a general
feature.

Legendre polynomials. In the generic situations both series (6.37a) and (6.37b) have an infinite number
of terms. However, for ` = 0, 1, 2, . . . it follows from (6.36)

a`+2 =
`(`+ 1)− `(`+ 1)

(`+ 1) (`+ 2)
a` = 0 , (6.40)

and so the series terminates. For instance,

` = 0 : y = a0 ,

` = 1 : y = a1z ,

` = 2 : y = a0(1− 3z2) .

These functions are proportional to the Legendre polynomials, P`(z), which are conventionally
normalized so that P`(1) = 1. Thus

P0 = 1 , P1 = z , P2 = 1
2 (3z2 − 1) , etc. (6.41)

19/02
19/04
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6.4 Regular Singular Points

Let z = z0 be a singular point of the ODE. As before we can take z0 = 0 wlog (otherwise define z′ = z−z0
so that z′ = 0 is the singular point, and then make the transformation z′ → z). The origin is then a
regular singular point if

zp(z) and z2q(z) are non-singular at z = 0 . (6.42)

In this case we can write
p(z) =

1
z
s(z) and q(z) =

1
z2
t(z) , (6.43)

where s(z) and t(z) are analytic at z = 0. Then the homogeneous ODE (6.17) becomes after multiplying
by z2

z2y′′ + zs(z)y′ + t(z)y = 0 . (6.44)

19/03

6.4.1 The Indicial Equation

We claim that there is always at least one solution to (6.44) of the form

y = zσ
∞∑

n=0

anz
n with a0 6= 0 and σ ∈ C . (6.45)

To see this substitute (6.45) into (6.44) to obtain

∞∑
n=0

(
(σ + n)(σ + n− 1) + (σ + n)s(z) + t(z)

)
anz

σ+n = 0 ,

or after division by zσ,

∞∑
n=0

(
(σ + n)(σ + n− 1) + (σ + n)s(z) + t(z)

)
anz

n = 0 . (6.46)

We now evaluate this sum at z = 0 (when zn = 0 except when n = 0) to obtain

(σ(σ − 1) + σs0 + t0)a0 = 0 , (6.47)

where s0 = s(0) and t0 = t(0); note that since s and t are analytic at z = 0, s0 and t0 are finite. Since
by definition a0 6= 0 (see (6.45)) we obtain the indicial equation for σ:

σ2 + σ(s0 − 1) + t0 = 0 . (6.48)

The roots σ1, σ2 of this equation are called the indices of the regular singular point. 19/01

6.4.2 Series Solutions

For each choice of σ from σ1 and σ2 we can find a recurrence relation for an by comparing powers of z
in (6.46), i.e. after expanding s and t in power series.

σ1 − σ2 /∈ Z. If σ1 − σ2 /∈ Z we can find both linearly independent solutions this way.

σ1 − σ2 ∈ Z. If σ1 = σ2 we note that we can find only one solution by the ansatz (6.45). However, as we
shall see, it’s worse than this. The ansatz (6.45) also fails (in general) to give both solutions when
σ1 and σ2 differ by an integer (although there are exceptions).
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6.4.3 Example: Bessel’s Equation of Order ν

Bessel’s equation of order ν is

y′′ +
1
z
y′ +

(
1− ν2

z2

)
y = 0 , (6.49)

where ν > 0 wlog. The origin z = 0 is a regular singular point with

s(z) = 1 and t(z) = z2 − ν2 . (6.50)

A power series solution of the form (6.45) solves (6.49) if, from (6.46),

∞∑
n=0

(
(σ + n)(σ + n− 1) + (σ + n)− ν2

)
anz

n +
∞∑

n=0

anz
n+2 = 0 , (6.51)

i.e. after the transformation n→ n− 2 in the second sum, if

∞∑
n=0

(
(σ + n)2 − ν2

)
anz

n +
∞∑

n=2

an−2z
n = 0 . (6.52)

Now compare powers of z to obtain

n = 0 : σ2 − ν2 = 0 (6.53a)

n = 1 :
(
(σ + 1)2 − ν2

)
a1 = 0 (6.53b)

n > 2 :
(
(σ + n)2 − ν2

)
an + an−2 = 0 . (6.53c)

(6.53a) is the indicial equation and implies that

σ = ±ν . (6.54)

Substituting this result into (6.53b) and (6.53c) yields

(1± 2ν) a1 = 0 (6.55a)
n(n± 2ν) an = −an−2 for n > 2 . (6.55b)

Remark. We note that there is no difficulty in solving for an from an−2 using (6.55b) if σ = +ν. However,
if σ = −ν the recursion will fail with an predicted to be infinite if at any point n = 2ν. There are
hence potential problems if σ1 − σ2 = 2ν ∈ Z, i.e. if the indices σ1 and σ2 differ by an integer.

2ν /∈ Z. First suppose that 2ν /∈ Z so that σ1 and σ2 do not differ by an integer. In this case (6.55a) and
(6.55b) imply

an =

 0 n = 1, 3, 5, . . . ,

− an−2

n(n± 2ν)
n = 2, 4, 6, . . . ,

(6.56)

and so we get two solutions

y± = a0z
±ν

(
1− 1

4(1± ν)
z2 + . . .

)
. (6.57)

2ν = 2m+ 1, m ∈ N. It so happens in this case that even though σ1 and σ2 differ by an odd integer
there is no problem; the solutions are still given by (6.56) and (6.57). This is because for Bessel’s
equation the power series proceed in even powers of z, and hence the problem recursion when
n = 2ν = 2m + 1 is never encountered. We conclude that the condition for the recursion relation
(6.55b) to fail is that ν is an integer.

ν = 0. If ν = 0 then σ1 = σ2 and we can only find one power series solution of the form (6.45), viz.

y = a0

(
1− 1

4z
2 + . . .

)
. (6.58)
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ν = m ∈ N. If ν is a positive integer then we can find one solution by choosing σ = ν. However if we
take σ = −ν then a2m is predicted to be infinite, i.e. a second series solution of the form (6.45)
fails.

Remarks. The existence of two power series solutions for 2ν = 2m + 1, m ∈ N is a ‘lucky’ accident. In
general there exists only one solution of the form (6.45) whenever the indices σ1 and σ2 differ by
an integer. We also note that the radius of convergence of the power series solution is infinite since
from (6.56)

lim
n→∞

∣∣∣∣ an

an−2

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1
n(n± 2ν)

∣∣∣∣ = 0 .

6.4.4 The Second Solution when σ1 − σ2 ∈ Z

A Preliminary: Bessel’s equation with ν = 0. In order to obtain an idea how to proceed when σ1−σ2 ∈ Z,
first consider the example of Bessel’s equation of zeroth order, i.e. ν = 0. Let y1 denote the solution
(6.58). Then, from (6.16) (after the transformations x→ z)

y2(z) = κy1(z)
∫ z 1

η y2
1(η)

dη . (6.59)

For small (positive) z we can deduce using (6.58) that

y2(z) = κa0 (1 +O(z2))
∫ z 1

η a2
0

(1 +O(η2)) dη

=
κ

a0
log z + . . . . (6.60)

We conclude that the second solution contains a logarithm.

The claim. Let σ1, σ2 be the two (possibly complex) solutions to the indicial equation for a regular
singular point at z = 0. Order them so that

Re (σ1) > Re (σ2) . (6.61)

Then we can always find one solution of the form

y1(z) = zσ1

∞∑
n=0

anz
n with, say, the normalisation a0 = 1 . (6.62)

If σ1 − σ2 ∈ Z we claim that the second-order solution takes the form

y2(z) = zσ2

∞∑
n=0

bnz
n + k y1(z) log z , (6.63)

for some number k. The coefficients bn can be found by substitution into the ODE. In some very
special cases k may vanish but k 6= 0 in general.

Example: Bessel’s equation of integer order. Suppose that y1 is the series solution with σ = +m to

z2y′′ + zy′ +
(
z2 −m2

)
y = 0 , (6.64)

where, compared with (6.49), we have written m for ν. Hence from (6.45) and (6.56)

y1 = zm
∞∑

`=0

a2`z
2` , (6.65)

since a2`+1 = 0 for integer `. Let
y = ky1 log z + w , (6.66)

Natural Sciences Tripos: IB Mathematical Methods I 97 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2004



then

y′ = ky′1 log z +
ky1
z

+ w′ and y′′ = ky′′1 log z +
2ky′1
z

− ky1
z2

+ w′′ .

On substituting into (6.64), and using the fact that y1 is a solution of (6.64), we find that

z2w′′ + zw′ + (z2 −m2)w = −2kzy′1 . (6.67)

Based on (6.54), (6.61) and (6.63) we now seek a series solution of the form

w = k z−m
∞∑

n=0

bnz
n . (6.68)

On substitution into (6.67) we have that

k
∞∑

n=6 01

n(n− 2m)bnzn−m + k
∞∑

n=0

bnz
n−m+2 = −2k

∞∑
`=0

(2`+m)a2`z
2`+m .

After multiplying by zm and making the transformations n→ n−2 and 2`→ n−2m in the second
and third sums respectively, it follows that

∞∑
n=1

n(n− 2m)bnzn +
∞∑

n=2

bn−2z
n = −2

∞∑
n=2m
n even

(n−m)an−2mz
n .

We now demand that the combined coefficient of zn is zero. Consider the even and odd powers
of zn in turn.

n = 1, 3, 5, . . . . From equating powers of z1 it follows that b1 = 0, and thence from the recurrence
relation for powers of z2`+1, i.e.

(2`+ 1)(2`+ 1− 2m)b2`+1 = −b2`−1 ,

that b2`+1 = 0 (` = 1, 2, . . . ).
n = 2, 4, . . . , 2m, . . . . From equating even powers of zn:

2 6 n 6 2m− 2 : bn−2 = −n(n− 2m)bn , (6.69a)

n = 2m : b2m−2 = −2ma0 , (6.69b)

n > 2m+ 2 : bn = − 1
n(n− 2m)

bn−2 −
2(n−m)
n(n− 2m)

an−2m . (6.69c)

Hence: 20/02

• if m > 1 solve for b2m−2 in terms of a0 from (6.69b);
• if m > 2 solve for b2m−4, b2m−6, . . . , b2, b0 in terms of b2m−2, etc. from (6.69a);
• finally, on the assumption that b2m is known (see below), solve for b2m+2, b2m+4, . . . in

terms of b2m and the a2` (` = 1, 2, . . . ) from (6.69c).
b2m is undetermined since this effectively generates a solution proportional to y1; wlog b2m = 0.

20/01
20/03
20/04

6.5 Inhomogeneous Second-Order Linear ODEs

We now [re]turn to the real inhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x) . (6.70)

The general solution, if one exists, has the form

y(x) = y0(x) + αy1(x) + βy2(x) , (6.71)

where y1(x) and y2(x) are linearly-independent solutions of the homogeneous equation, and are often
referred to as complementary functions, and y0(x) is a particular solution, which is sometimes also called
a particular integral.

Remark. The solution (6.71) solves the equation and involves two arbitrary constants.
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6.5.1 The Method of Variation of Parameters

The question that remains is how to find the particular solution. To that end first suppose that we have
solved the homogeneous equation and found two linearly-independent solutions y1 and y2. Then in order
to find a particular solution consider

y0(x) = u(x)y1(x) + v(x)y2(x) . (6.72)

If u and v were constants (‘parameters’) y0 would solve the homogeneous equation. However, we allow the
‘parameters’ to vary, i.e. to be functions of x, in such a way that y0 solves the inhomogeneous problem.

Remark. We have gone from one unknown function, i.e. y0 and one equation (i.e. (6.70)), to two unknown
functions, i.e. u and v and one equation. We will need to find, or in fact choose, another equation.

We now differentiate (6.72) to find that

y′0 = (uy′1 + vy′2) + (u′y1 + v′y2) (6.73a)
y′′0 = (uy′′1 + vy′′2 + u′y′1 + v′y′2) + (u′′y1 + v′′y2 + u′y′1 + v′y′2) . (6.73b)

If we substitute the above into the inhomogeneous equation (6.70) we will have not apparently made
much progress because we will still have a second-order equation involving terms like u′′ and v′′. However,
suppose that we eliminate the u′ and v′ terms from (6.73a) by demanding that u and v satisfy the extra
equation

u′y1 + v′y2 = 0 . (6.74)

Then (6.73a) and (6.73b) become

y′0 = uy′1 + vy′2 (6.75a)
y′′0 = uy′′1 + vy′′2 + u′y′1 + v′y′2 . (6.75b)

It follows from (6.72), (6.75a) and (6.75b) that

y′′0 + py′0 + qy0 = u(y′′1 + py′1 + qy1) + v(y′′2 + py′2 + qy2) + u′y′1 + v′y′2

= u′y′1 + v′y′2 ,

since y1 and y2 solve the homogeneous equation (6.17). Hence y0 solves the inhomogeneous equation
(6.70) if

u′y′1 + v′y′2 = f . (6.76)

We now have two simultaneous equations for u′, v′, i.e. (6.74) and (6.76), with solution

u′ = −fy2
W

and v′ =
fy1
W

, (6.77)

where W is the Wronskian,
W = y1y

′
2 − y2y

′
1 . (6.78)

W is non-zero because y1 and y2 were chosen to be linearly independent. Integrating we obtain

u = −
∫ x

a

y2(ζ)f(ζ)
W (ζ)

dζ and v =
∫ x

a

y1(ζ)f(ζ)
W (ζ)

dζ , (6.79)

where a is arbitrary. We could have chosen different lower limits for the two integrals, but we do not need
to find the general solution, only a particular one. Substituting this result back into (6.72) we obtain as
our particular solution

y0(x) =
∫ x

a

f(ζ)
W (ζ)

(
y1(ζ)y2(x)− y1(x)y2(ζ)

)
dζ . (6.80)
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Remark. We observe that, since the integrand is zero when ζ = x,

y′0(x) =
∫ x

a

f(ζ)
W (ζ)

(
y1(ζ)y′2(x)− y′1(x)y2(ζ)

)
dζ . (6.81)

Hence the particular solution (6.80) satisfies the initial value homogeneous boundary conditions

y(a) = y′(a) = 0 . (6.82)

More general initial value boundary conditions would be inhomogeneous, e.g.

y(a) = k1 , y′(a) = k2 , (6.83)

where k1 and k2 are constants which are not simultaneously zero. Such inhomogeneous boundary
conditions can be satisfied by adding suitable multiples of the linearly-independent solutions of the
homogeneous equation, i.e. y1 and y2.

Example. Find the general solution to the equation

y′′ + y = secx . (6.84)

Answer. Two linearly independent solutions of the homogeneous equation are

y1 = cosx and y2 = sinx , (6.85a)

with a Wronskian
W = y1y

′
2 − y2y

′
1 = cosx(cosx)− sinx(− sinx) = 1 . (6.85b)

Hence from (6.80) a particular solution is given by

y0(x) =
∫ x

sec ζ
(
cos ζ sinx− cosx sin ζ

)
dζ

= sinx
∫ x

dζ − cosx
∫ x

tan ζ dζ

= x sinx+ cosx log |cosx| . (6.86)

The general solution is thus

y(x) = (α+ log |cosx|) cosx+ (β + x) sinx . (6.87)

6.5.2 Two Point Boundary Value Problems

For many important problems ODEs have to be solved subject to boundary conditions at more than one
point. For linear second-order ODEs such boundary conditions have the general form

Ay(a) +By′(a) = ka , (6.88a)
Cy(b) +Dy′(b) = kb , (6.88b)

for two points x = a and x = b (wlog b > a), where A, B, C, D, ka and kb are constants. If ka = kb = 0
these boundary conditions are homogeneous, otherwise they are inhomogeneous.

For simplicity we shall consider the special case of homogeneous boundary conditions given by

y(a) = 0 and y(b) = 0 . (6.89)

The general solution of the inhomogeneous equation (6.70) satisfying the first boundary condition
y(a) = 0 is, from (6.71), (6.80) and (6.82),

y(x) = K(y1(a)y2(x)− y1(x)y2(a)) +
∫ x

a

f(ζ)
W (ζ)

(
y1(ζ)y2(x)− y1(x)y2(ζ)

)
dζ , (6.90a)

where the first term on the right-hand side is the general solution of the homogeneous equation vanishing
at x = a and K is a constant. If we now impose the condition y(b) = 0, then we require that

K
(
y1(a)y2(b)− y1(b)y2(a)

)
+
∫ b

a

f(ζ)
W (ζ)

(
y1(ζ)y2(b)− y1(b)y2(ζ)

)
dζ = 0 . (6.90b)

This determines K provided that y1(a)y2(b)− y1(b)y2(a) 6= 0.

Natural Sciences Tripos: IB Mathematical Methods I 100 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2004



Remark. If per chance y1(a)y2(b)− y1(b)y2(a) = 0 then a solution exists to the homogeneous equation
satisfying both boundary conditions. As a general rule a solution to the inhomogeneous problem
exists if and only if there is no solution of the homogeneous equation satisfying both boundary
conditions.

A particular choice of y1 and y2. For linearly independent y1 and y2 let

ya(x) = y1(a)y2(x)− y1(x)y2(a) and yb(x) = y1(b)y2(x)− y1(x)y2(b) , (6.91)

so that ya(a) = 0 and yb(b) = 0. The Wronskian of ya and yb is given by

yay
′
b − y′ayb =

(
y1(a)y2(b)− y1(b)y2(a)

)
(y1y′2 − y′1y2)

=
(
y1(a)y2(b)− y1(b)y2(a)

)
W ,

where W is the Wronskian of y1 and y2. Hence ya and yb are linearly independent if

y1(a)y2(b)− y1(b)y2(a) 6= 0 , (6.92)

i.e. the same condition that allows us to solve for K. Under such circumstances we can redefine y1
and y2 to be ya and yb respectively.
In general the amount of algebra can be reduced by a sensible choice of y1 and y2 so that they
satisfy the homogeneous boundary conditions at x = a and x = b respectively, i.e. in the case of
(6.89)

y1(a) = y2(b) = 0 . (6.93)

6.5.3 Green’s Functions

Suppose that we wish to solve the equation

L(x) y(x) = f(x) , (6.94)

where L(x) is the general second-order linear differential operator in x, i.e.

L(x) =
d2

dx2
+ p(x)

d
dx

+ q(x) , (6.95)

where p and q are continuous functions. To fix ideas we will assume that the solution should satisfy
homogeneous boundary conditions at x = a and x = b, i.e. ka = kb = 0 in (6.88a) and (6.88b).

Next, suppose that we can find a solution G(x, ζ) that is the response of the system to forcing at a
point ζ, i.e. G(x, ζ) is the solution to

L(x)G(x, ζ) = δ(x− ζ) , (6.96)

subject to
AG(a, ζ) +BGx(a, ζ) = 0 and C G(b, ζ) +DGx(b, ζ) = 0 , (6.97)

where Gx(x, ζ) = ∂G
∂x (x, ζ) and we have used ∂

∂x rather than d
dx since G is a function of both x and ζ.

Then we claim that the solution of the original problem (6.94) is

y(x) =
∫ b

a

G(x, ζ)f(ζ) dζ . (6.98)

To see this we first note that (6.98) satisfies the boundary conditions, since
∫

0 dζ = 0. Further, it also
satisfies the inhomogeneous equation (6.94) (or (6.70)) because

L(x) y(x) =
∫ b

a

L(x)G(x, ζ) f(ζ) dζ differential wrt x, integral wrt ζ

=
∫ b

a

δ(x− ζ) f(ζ) dζ from (6.96)

= f(x) from (3.4) . (6.99)

The function G(x, ζ) is called the Green’s function of L(x) for the given homogeneous boundary condi-
tions. 21/02
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6.5.4 Two Properties Green’s Functions

In the next section we will construct a Green’s function. However, first we need to derive two properties
of G(x, ζ). Suppose that we integrate equation (6.96) from ζ − ε to ζ + ε for ε > 0 and consider the limit
ε→ 0. From (3.4) the right hand side is equal to 1, and hence

1 = lim
ε→0

∫ ζ+ε

ζ−ε

L(x)G dx

= lim
ε→0

∫ ζ+ε

ζ−ε

(
∂2G

∂x2
+ p

∂G

∂x
+ q G

)
dx from (6.95)

= lim
ε→0

∫ ζ+ε

ζ−ε

∂

∂x

(
∂G

∂x
+ pG

)
dx+ lim

ε→0

∫ ζ+ε

ζ−ε

(
−dp

dx
G+ q G

)
dx rearrange

= lim
ε→0

[
∂G

∂x
+ pG

]x=ζ+ε

x=ζ−ε

− lim
ε→0

∫ ζ+ε

ζ−ε

(
dp
dx

− q

)
G dx . (6.100)

How can this equation be satisfied? Let us suppose that G(x, ζ) is continuous at x = ζ, i.e. that

lim
ε→0

[
G(x, ζ)

]ζ+ε

ζ−ε

= 0 . (6.101a)

Then since p and q are continuous, (6.100) reduces to

lim
ε→0

[
∂G

∂x

]x=ζ+ε

x=ζ−ε

= 1 , (6.101b)

i.e. that there is a unit jump in the derivative of G at x = ζ (cf. the unit jump in the Heaviside step
function (3.9) at x = 0). Note that a function can be continuous and its derivative discontinuous, but
not vice versa. 21/01

21/03
21/04

6.5.5 Construction of the Green’s Function

G(x, ζ) can be constructed by the following procedure. First we note that when x 6= ζ, G satisfies the
homogeneous equation, and hence G should be the sum of two linearly independent solutions, say y1 and
y2, of the homogeneous equation. So let

G(x, ζ) =

{
α−(ζ)y1(x) + β−(ζ)y2(x) for a 6 x < ζ,

α+(ζ)y1(x) + β+(ζ)y2(x) for ζ 6 x 6 b.
(6.102)

By construction this satisfies (6.96) for x 6= ζ. Next we obtain equations relating α±(ζ) and β±(ζ) by
requiring at x = ζ that G is continuous and ∂G

∂x has a unit discontinuity. It follows from (6.101a) and
(6.101b) that [

α+(ζ)y1(ζ) + β+(ζ)y2(ζ)
]
−
[
α−(ζ)y1(ζ) + β−(ζ)y2(ζ)

]
= 0 ,[

α+(ζ)y′1(ζ) + β+(ζ)y′2(ζ)
]
−
[
α−(ζ)y′1(ζ) + β−(ζ)y′2(ζ)

]
= 1 ,

i.e.

y1(ζ)
[
α+(ζ)− α−(ζ)

]
+ y2(ζ)

[
β+(ζ)− β−(ζ)

]
= 0 ,

y′1(ζ)
[
α+(ζ)− α−(ζ)

]
+ y′2(ζ)

[
β+(ζ)− β−(ζ)

]
= 1 ,

i.e. (
y1 y2
y′1 y′2

)(
α+ − α−
β+ − β−

)
=
(

0
1

)
. (6.103)

A solution exists to this equation if

W ≡
∥∥∥∥ y1 y2
y′1 y′2

∥∥∥∥ 6= 0 ,
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i.e. if y1 and y2 are linearly independent; if so then

α+ − α− = − y2(ζ)
W (ζ)

and β+ − β− =
y1(ζ)
W (ζ)

. (6.104)

Finally we impose the boundary conditions. For instance, suppose that the solution y is required to
satisfy (6.89) (i.e. y(a) = 0 and y(b) = 0), then the appropriate boundary conditions for G are

G(a, ζ) = G(b, ζ) = 0 , (6.105)

i.e. A = C = 1 and B = D = 0 in (6.97). It follows from (6.102) that we require

α−(ζ)y1(a) + β−(ζ)y2(a) = 0 , (6.106a)
α+(ζ)y1(b) + β+(ζ)y2(b) = 0 . (6.106b)

α±, β± can now be determined from (6.104), (6.106a) and (6.106b). For simplicity choose y1 and y2 as
in (6.93) so that y1(a) = y2(b) = 0; then

α+ = β− = 0 , (6.107a)

and thence from (6.104)

α− =
y2(ζ)
W (ζ)

and β+ =
y1(ζ)
W (ζ)

. (6.107b)

It follows from (6.102) that

G(x, ζ) =


y1(x)y2(ζ)
W (ζ)

for a 6 x < ζ,

y1(ζ)y2(x)
W (ζ)

for ζ 6 x 6 b.
(6.108)

Initial value homogeneous boundary conditions. Suppose that instead of the two-point boundary condi-
tion (6.89) we require that y(a) = y′(a) = 0, and thence that G(a, ζ) = ∂G

∂x (a, ζ) = 0. If we choose
y1(a) = 0 and y′2(a) = 0, then in place of (6.107a) we have that α− = β− = 0. The conditions that
G be continuous and ∂G

∂x has a unit discontinuity then give that

G(x, ζ) =


0 for a 6 x < ζ,

y1(ζ)y2(x)− y1(x)y2(ζ)
W (ζ)

for ζ 6 x 6 b.
(6.109)

6.5.6 Unlectured Alternative Derivation of a Green’s Function

By means of a little bit of manipulation we can also recover (6.108) from our earlier general solution
(6.90a) and (6.90b). That solution was derived for the homogeneous boundary conditions (6.89), i.e.

y(a) = 0 and y(b) = 0 .

As above choose y1 and y2 so that they satisfy the boundary conditions at x = a and x = b respectively,
i.e. let

y1(a) = y2(b) = 0 . (6.110)

In this case we have from (6.90b) that

K = − 1
y2(a)

∫ b

a

f(ζ)
W (ζ)

y2(ζ) dζ . (6.111)
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It follows from (6.90a) that

y(x) =
∫ b

a

f(ζ)
W (ζ)

y1(x)y2(ζ) dζ +
∫ x

a

f(ζ)
W (ζ)

(
y1(ζ)y2(x)− y1(x)y2(ζ)

)
dζ

=
∫ x

a

y1(ζ)y2(x)
W (ζ)

f(ζ) dζ +
∫ b

x

y1(x)y2(ζ)
W (ζ)

f(ζ) dζ

=
∫ b

a

G(x, ζ)f(ζ) dζ (6.112)

where, as in (6.108), G(x, ζ) is defined by

G(x, ζ) =


y1(ζ)y2(x)
W (ζ)

for ζ 6 x, i.e. x > ζ,

y1(x)y2(ζ)
W (ζ)

for ζ > x, i.e. x < ζ.
(6.113)

Remark. Note from (6.113) that G(x, ζ) is continuous at x = ζ, and that

∂G

∂x
(x, ζ) =


y1(ζ)y′2(x)
W (ζ)

for x > ζ,

y′1(x)y2(ζ)
W (ζ)

for x < ζ.
(6.114)

Hence, from using the definition of the Wronskian (6.9), ∂G
∂x is discontinuous at x = ζ with discon-

tinuity

lim
ε→0

[
∂G

∂x
(x, ζ)

]x=ζ+ε

x=ζ−ε

=
y1(ζ)y′2(ζ)
W (ζ)

− y′1(ζ)y2(ζ)
W (ζ)

= 1 . (6.115)

6.5.7 Example of a Green’s Function

Find the Green’s function in 0 < a < b for

L(x) =
d2

dx2
+

1
x

d
dx

− n2

x2
, (6.116a)

with homogeneous boundary conditions

G(a, ζ) = 0 and
∂G

∂x
(b, ζ) = 0 , (6.116b)

i.e. with A = D = 1 and B = C = 0 in (6.97).

Answer. Seek solutions to the homogeneous equation L(x) y = 0 of the form y = xr. Then we require
that

r(r − 1) + r − n2 = 0 , i.e. r = ±n .

Let
y1 =

(x
a

)n

−
(a
x

)n

and y2 =
(x
b

)n

+
( b
x

)n

, (6.117)

where we have constructed y1 and y2 so that y1(a) = 0 and y′2(b) = 0 as is appropriate for boundary
conditions (6.116b) (cf. the choice of y1(a) = 0 and y2(b) = 0 in § 6.5.5 since in that case we required
the Green’s function to satisfy boundary conditions (6.105)). As in (6.102) let

G(x, ζ) =

{
α−(ζ)y1(x) + β−(ζ)y2(x) for a 6 x < ζ,

α+(ζ)y1(x) + β+(ζ)y2(x) for ζ 6 x 6 b.
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Since we require that G(a, ζ) = 0 from (6.116b), and by construction y1(a) = 0, it follows that
β− = 0. Similarly, since we require that ∂G

∂x (b, ζ) = 0 from (6.116b), and by construction y′2(b) = 0,
it follows that α+ = 0. Hence

G(x, ζ) =

{
α−(ζ)y1(x) for a 6 x < ζ,

β+(ζ)y2(x) for ζ 6 x 6 b.

We also require that G is continuous and ∂G
∂x has a unit discontinuity at x = ζ, hence

β+(ζ)y2(ζ) = α−(ζ)y1(ζ) and β+(ζ)y′2(ζ)− α−(ζ)y′1(ζ) = 1 .

Thus

α− =
y2(ζ)
W (ζ)

, β+ =
y1(ζ)
W (ζ)

and G(x, ζ) =


y1(x)y2(ζ)
W (ζ)

for a 6 x < ζ,

y1(ζ)y2(x)
W (ζ)

for ζ 6 x 6 b.
(6.118)

This has the same form as (6.108) because we [carefully] chose y1 and y2 in (6.117) to satisfy the
boundary conditions at x = a and x = b respectively. Note, however, the boundary condition that
the solution is required to satisfy at x = b is different in the two cases, i.e. y2(b) = 0 in (6.108)
while y′2(b) = 0 in (6.118).

6.6 Sturm-Liouville Theory

Definition. A second-order linear differential operator L is said to be of Sturm-Liouville type if

L = − d
dx

(
p(x)

d
dx

)
− q(x) , (6.119a)

where p(x) and q(x) are real functions defined for a 6 x 6 b, with

p(x) > 0 for a < x < b . (6.119b)

Notation alert. The use of p and q in (6.119a) is different from their use up to now in this section, e.g.
in (6.2), (6.70) and (6.95). Unfortunately both uses are ‘conventional’.

6.6.1 Inner Products and Self-Adjoint Operators

Given two, possibly complex, piecewise continuous functions
u(x) and v(x), define an inner product 〈u | v 〉 by

〈u | v 〉 =
∫ b

a

u∗(x)v(x)w(x) dx , (6.120a)

where a and b are constants and w(x) is a real weight function
such that

w(x) > 0 for a < x < b . (6.120b)

As required in the definition of an inner product in (4.27a), (4.27c), (4.27d) and (4.27e), we note that
for piecewise continuous functions u, v and t and complex constants α and β,

〈u | v 〉 = 〈 v |u 〉∗ ; (6.121a)
〈u |αv + βt 〉 = α 〈u | v 〉+ β 〈u | t 〉 ; (6.121b)

〈 v | v 〉 > 0 ; (6.121c)
〈 v | v 〉 = 0 ⇒ v = 0 . (6.121d)
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Definition. A general differential operator L̃ is said to be self-adjoint if〈
u
∣∣∣ L̃v 〉 =

〈
L̃u | v

〉
. (6.122)

Remark. Whether or not an operator L̃ is self adjoint with respect to an inner product depends on the
choice of weight function in the inner product. 22/02

6.6.2 The Sturm-Liouville Operator

Consider the Sturm-Liouville operator (6.119a) together with the identity weight function w = 1, then

〈u | Lv 〉 =
∫ b

a

dxu∗Lv from (6.120a)

= −
∫ b

a

dxu∗
(

d
dx

(
p
dv
dx

)
+ qv

)
from (6.119a)

= −
[
u∗p

dv
dx

]b

a

+
∫ b

a

dx p
du∗

dx
dv
dx

−
∫ b

a

dx qu∗v integrate by parts

=
[
−u∗pdv

dx
+ p

du∗

dx
v

]b

a

−
∫ b

a

dx v
d
dx

(
p
du∗

dx

)
−
∫ b

a

dx v qu∗ integrate by parts

=
[
p

(
v
du∗

dx
− u∗

dv
dx

)]b

a

+
∫ b

a

dx vLu∗ from (6.119a)

=
[
p

(
v
du∗

dx
− u∗

dv
dx

)]b

a

+
∫ b

a

dx (Lu)∗v since L real

=
[
p

(
v
du∗

dx
− u∗

dv
dx

)]b

a

+ 〈 Lu | v 〉 from (6.120a). (6.123a)

Suppose we now insist that u and v be such that[
p

(
v
du∗

dx
− u∗

dv
dx

)]b

a

= 0 , (6.123b)

then (6.122) is satisfied. We conclude that the differential operator

L = − d
dx

(
p(x)

d
dx

)
− q(x)

acting on functions, say u or v, which satisfy homogeneous boundary conditions at x = a and x = b (e.g.
u(a) = 0, v(a) = 0 and u(b) = 0, v(b) = 0), is self-adjoint with respect to the inner product with w = 1. 22/01

22/03

Remarks.

• The boundary conditions are part of the conditions for an operator to be self-adjoint.

• Suppose that an inner product for column vectors u and v is defined by (cf. (4.55))

〈 u | v 〉 = u† v . (6.124)

Then for a Hermitian matrix H we have that

〈 u |Hv 〉 = u†H v = u†H† v since H is Hermitian

= (Hu)† v = 〈Hu | v 〉 since (AB)† = B†A†. (6.125)

A comparison of (6.122) and (6.125) suggests that self-adjoint operators are to general operators
what Hermitian matrices are to general matrices. 22/04
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6.6.3 The Rôle of the Weight Function

Not all second-order linear differential operators have the Sturm-Liouville form (6.119a). However, sup-
pose that L̃ is a second-order linear differential operator not of Sturm-Liouville form, then there exists
a function w(x) so that

L = wL̃ (6.126)

is of Sturm-Liouville form.

Proof. The general second-order linear differential operator acting on functions defined for a 6 x 6 b
can be written in the form

L̃ = −P (x)
d2

dx2
−R(x)

d
dx

−Q(x) , (6.127a)

where P , Q and R are real functions; we shall assume that

P (x) > 0 for a < x < b . (6.127b)

Hence for L defined by (6.126)

L = −wP d2

dx2
− wR

d
dx

− wQ

= − d
dx

(
wP

d
dx

)
+
(

d
dx
(
wP
)
− wR

)
d
dx

− wQ . (6.128)

The operator L in (6.128) is of Sturm-Liouville form (6.119a) if we choose our integrating factor w
so that

P
dw
dx

+
(

dP
dx

−R

)
w = 0 , (6.129a)

and let
p = wP and q = wQ . (6.129b)

On solving (6.129a), and on choosing the constant of integration so that w(a) = 1, we obtain

w = exp
∫ x

a

1
P (ζ)

(
R(ζ)− dP

dx
(ζ)
)

dζ . (6.130)

Remark. It follows from (6.130) that w > 0, and hence from (6.127b) and (6.129b) that p > 0 for
a < x < b (cf. (6.119b)).

Examples. Put the operators

L̃ = − d2

dx2
− d

dx
and L̃ = − d2

dx2
− 1
x

d
dx

in Sturm-Liouville form.

Answers. For the first operator P = R = 1. Hence from (6.130), w = expx (wlog a = 0), and thus

L = exL̃ = − d
dx

(
ex d

dx

)
.

For the second operator P = 1 and R = x−1. Hence from (6.130), w = x (wlog a = 1), and
thus

L = xL̃ = − d
dx

(
x

d
dx

)
.
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Is L̃ self adjoint? We have seen that the general second-order linear differential operator L̃ can be trans-
formed into Sturm-Liouville form by multiplication by a weight function w. It follows from § 6.6.2
that, subject to the boundary conditions (6.123b) being satisfied, wL̃ = L is self-adjoint with
respect to an inner product with the identity weight function, i.e.∫ b

a

u∗ (L v) dx =
∫ b

a

(Lu∗) v dx . (6.131a)

However suppose that we slightly rearrange this equation to∫ b

a

u∗ (L̃ v)w dx =
∫ b

a

(L̃u∗) v w dx . (6.131b)

Then from reference to the definition of an inner product with weight function w, i.e. (6.120a), we
see that, subject to appropriate boundary conditions being satisfied, i.e.[

wP

(
v
du∗

dx
− u∗

dv
dx

)]b

a

= 0 , (6.132)

L̃ is self-adjoint with respect to an inner product with the weight function w.

6.6.4 Eigenvalues and Eigenfunctions

The equation L̃y = f is analogous to the matrix equation Mx = b. This analogy suggests that it might
be profitable to consider the eigenvalue equation

L̃y = λy , (6.133)

where λ is the, possibly complex, eigenvalue associated with the eigenfunction y 6= 0.

Example. The Schrödinger equation for a one-dimensional quantum harmonic oscillator is(
− ~2

2m
d2

dx2
+ 1

2k
2x2

)
ψ = Eψ .

This is an eigenvalue equation where the eigenvalue E is the energy level of the oscillator.

Remark. If L̃ is not in Sturm-Liouville form we can multiply by w to get the equivalent eigenvalue
equation,

Ly = λwy , (6.134)

where L is in Sturm-Liouville form.

The Claim. We claim, but do not prove, that if the functions on which L̃ [ or equivalently L ] acts are such
that the boundary conditions (6.132) [ or equivalently (6.123b) ] are satisfied, then it is generally
the case that (6.133) [ or equivalently (6.134) ] has solutions only for a discrete, but infinite, set of
values of λ:

{λn, n = 1, 2, 3, . . . } (6.135)

These are the eigenvalues of L̃ [ or equivalently L ]. The corresponding solutions {yn(x), n =
1, 2, 3, . . . } are the eigenfunctions.

Example. Find the eigenvalues and eigenfunctions for the operator

L = − d2

dx2
, (6.136)

on the assumption that L acts on functions defined on 0 6 x 6 π that vanish at end-points x = 0
and x = π.
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Answer. L is in Sturm-Liouville form with p = 1 and q = 0. Further, the boundary conditions
ensure that (6.123b) is satisfied. Hence L is self-adjoint. The eigenvalue equation is

y′′ + λy = 0 , (6.137a)

with general solution
y = α cosλ

1
2x+ β sinλ

1
2x . (6.137b)

Non-zero solutions exist with y(0) = y(π) = 0 only if

α = 0 and sinλ
1
2π = 0 . (6.138)

Hence λ = n2 for integer n, and the corresponding eigenfunctions are

yn(x) = β sinnx . (6.139)

Remark. The eigenvalues λn = n2 are real (cf. the eigenvalues of an Hermitian matrix.).

The norm. We define the norm, ‖y‖, of a (possibly complex) function y(x) by

‖y‖2 ≡ 〈 y | y 〉w =
∫ b

a

|y|2 w dx , (6.140)

where we have introduced the subscript w (a non-standard notation) to indicate the weight function
w in the inner product. It is conventional to normalize eigenfunctions to have unit norm. For our
example (6.139) this results in

yn =
(

2
π

) 1
2

sinnx . (6.141)

6.6.5 The Eigenvalues of a Self-Adjoint Operator are Real

Let L̃ be a self-adjoint operator with respect to an inner product with weight w, and suppose that y is
a non-zero eigenvector with eigenvalue λ satisfying

L̃y = λy . (6.142a)

Take the complex conjugate of this equation, remembering that L̃ and w are real, to obtain

L̃y∗ = λ∗y∗ . (6.142b)

Hence ∫ b

a

(
y∗ L̃y − y L̃y∗

)
w dx =

∫ b

a

(y∗λy − yλ∗y∗)w dx from (6.142a) and (6.142b)

= (λ− λ∗)
∫ b

a

|y|2w dx .

= (λ− λ∗)〈 y | y 〉w . (6.143)

But L̃ is self adjoint with respect to an inner product with weight w, and hence the left hand side of
(6.143) is zero (e.g. (6.131b) with u = v = y). It follows that

(λ− λ∗)〈 y | y 〉w = 0 , (6.144)

But 〈 y | y 〉w 6= 0 from (6.121d) since y has been assumed to be a non-zero eigenvector. Hence

λ = λ∗ , i.e. λ is real. (6.145)

Remark. This result can also be obtained, arguably in a more elegant fashion, using inner product
notation since

λ〈 y | y 〉w = 〈 y |λy 〉w from (6.121b)

= 〈 y | L̃y 〉w from (6.133)

= 〈 L̃y | y 〉w since L̃ is self-adjoint
= 〈λy | y 〉w from (6.133)
= λ∗〈 y | y 〉w from (6.121a) and (6.121b). (6.146)

This is essentially (6.144), and hence (6.145) follows as above.
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6.6.6 Eigenfunctions with Distinct Eigenvalues are Orthogonal

Definition. Two functions u and v are said to be orthogonal with respect to a given inner product, if

〈u | v 〉w = 0 . (6.147)

As before let L̃ be a general second-order linear differential operator that is self-adjoint with respect to
an inner product with weight w. Suppose that y1 and y2 are eigenvectors of L̃, with distinct eigenvalues
λ1 and λ2 respectively. Then

L̃y1 = λ1y1 , (6.148a)

L̃y2 = λ2y2 . (6.148b)

From taking the complex conjugate of (6.148a) we also have that

L̃y∗1 = λ1y
∗
1 , (6.148c)

since L̃ and λ1 are real. Hence∫ b

a

(
y∗1 L̃y2 − y2 L̃y∗1

)
w dx =

∫ b

a

(y∗1 λ2y2 − y2 λ1y
∗
1)w dx from (6.148b) and (6.148c)

= (λ2 − λ1)
∫ b

a

y∗1y2 w dx

= (λ2 − λ1) 〈 y1 | y2 〉w . (6.149)

But L̃ is self adjoint, and hence the left hand side of (6.149) is zero (e.g. (6.131b) with u = y1 and
v = y2). It follows that

(λ2 − λ1) 〈 y1 | y2 〉w = 0 . (6.150)

Hence if λ1 6= λ2 then the eigenfunctions are orthogonal since

〈 y1 | y2 〉w = 0 . (6.151)

Remark. As before the same result can be obtained using inner product notation since (6.150) follows
from

λ2〈 y1 | y2 〉w = 〈 y1 |λ2y2 〉w from (6.121b)

= 〈 y1 | L̃y2 〉w from (6.148b)

= 〈 L̃y1 | y2 〉w since L̃ is self-adjoint
= 〈λ1y1 | y2 〉w from (6.148a)
= λ∗1〈 y1 | y2 〉w from (6.121a) and (6.121b)
= λ1〈 y1 | y2 〉w from (6.145). (6.152)

23/01

Example. Returning to our earlier example, we recall that we showed that the eigenfunctions of the
Sturm-Liouville operator

L = − d2

dx2
, (6.153)

acting on functions that vanish at end-points x = 0 and x = π, are

yn =
(

2
π

) 1
2

sinnx . (6.154)
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Since ∫ π

0

y∗nym dx =
2
π

∫ π

0

sinnx sinmxdx

=
1
π

∫ π

0

(
cos(n−m)x− cos(n+m)x

)
dx

= 0 if n 6= m, (6.155)

we confirm that the eigenfunctions are indeed orthogonal.

Orthonormal set. We have seen that eigenfunctions with different eigenvalues are mutually orthogonal.
We claim, but do not prove, that mutually orthogonal eigenfunctions can be constructed even for
repeated eigenvalues (cf. the ‘experimental error’ argument of § 4.7.2). Further, if we normalize all
eigenfunctions to have unit norm then we have an orthonormal set of eigenfunctions, i.e.∫ b

a

w y∗nym dx = 〈 yn | ym 〉w = δmn . (6.156)

23/02

6.6.7 Eigenfunction Expansions

Let {yn, n = 1, 2, . . . } be an orthonormal set of eigenfunctions of a self-adjoint operator. Then we claim
that any function f(x) with the same boundary conditions as the eigenfunctions can be expressed as an
eigenfunction expansion

f(x) =
∞∑

n=1

anyn(x) , (6.157a)

where the coefficients an are given by
an = 〈 yn | f 〉w , (6.157b)

i.e. we claim that the eigenfunctions form a basis. A set of eigenfunctions that has this property is said
to be complete. 23/03

We will not prove the existence of the expansion (6.157a). However, if we assume such an expansion does
exist, then we can confirm that the coefficients must be given by (6.157b) since

〈 yn | f 〉w = 〈 yn |
∑∞

m=1 amym 〉w from (6.157a)

=
∞∑

m=1

am〈 yn | ym 〉w from inner product property (4.27c)

=
∞∑

m=1

amδnm from (6.156)

= an from (0.11b), and as required.

23/04
The completeness relation. It follows from (6.157a) and (6.157b) that

f(x) =
∞∑

n=1

〈 yn | f 〉w yn(x)

=
∞∑

n=1

yn(x)
∫ b

a

w(ζ) y∗n(ζ)f(ζ) dζ from (6.120a)

=
∫ b

a

f(ζ)

(
w(ζ)

∞∑
n=1

yn(x)y∗n(ζ)

)
dζ interchange sum and integral. (6.158)

This expression holds for all functions f satisfying the appropriate homogeneous boundary condi-
tions. Hence from (3.4)

w(ζ)
∞∑

n=1

yn(x)y∗n(ζ) = δ(x− ζ) . (6.159a)

This is the completeness relation.
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Remark. Suppose we exchange x and ζ in the complex conjugate of (6.159a), then using the facts
that the weight function is real and the delta function is real and symmetric (see (3.8a) and
(3.8b)), we also have that

w(x)
∞∑

n=1

yn(x)y∗n(ζ) = δ(x− ζ) . (6.159b)

Example: Fourier series. Again consider the Sturm-Liouville operator

L = − d2

dx2
. (6.160)

In this case assume that it acts on functions that are 2π-periodic. L is still self-adjoint with weight
function w = 1 since the periodicity ensures that the boundary conditions (6.123b) are satisfied if,
say, a = 0 and b = 2π. This time we choose to write the general solution of the eigenvalue equation
(6.134) as

y = α exp
(
ıλ

1
2x
)

+ β exp
(
−ıλ 1

2x
)
. (6.161)

This solution is 2π-periodic if λ = n2 for integer n (as before). Note that now we have two eigenfunc-
tions for each eigenvalue (except for n = 0). Label the eigenfunctions by yn for n = . . . ,−1, 0, 1, . . . ,
with corresponding eigenvalues λn = n2. Although there are repeated eigenvalues an orthonormal
set of eigenfunctions exists (as claimed), e.g.

yn =
1√
2π

exp(ınx) for n ∈ Z. (6.162)

Hence from (6.157a) a 2π-periodic function f has an eigenfunction expansion

f(x) =
1√
2π

∞∑
n=−∞

an exp(ınx) , (6.163)

where an is given by (6.157b). This is just the Fourier series representation of f . In this case the
completeness relation (6.159a) reads (cf. (3.6))

1
2π

∞∑
n=−∞

exp
(
ın(x− ζ)

)
= δ(x− ζ) . (6.164)

Example: Legendre polynomials. Legendre’s equation (6.34),

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0 , (6.165a)

can be written as an Sturm-Liouville eigenvalue equation Ly = λy where

L = − d
dx

(
(1− x2)

d
dx

)
and λ = `(`+ 1) . (6.165b)

In terms of our standard notation

p = 1− x2 and q = 0 . (6.165c)

Suppose now we require that L operates on functions y that remain finite at x = −1 and x = 1.
Then py = 0 at x = −1 and x = 1, and hence the boundary conditions (6.123b) are satisfied if
a = −1 and b = 1. It follows that L is self-adjoint.

Further, we saw earlier that Legendre’s equation has solutions that are finite at x = ±1 when
` = 0, 1, 2, . . . , (see (6.40) and following), and that the solutions are Legendre polynomials P`(x).
Identify the eigenvalues and eigenfunctions as

λ` = `(`+ 1) and y`(x) = P`(x) for ` = 0, 1, 2, . . . . (6.166)

It then follows from our general theory that the Legendre polynomials are orthogonal in the sense
that ∫ 1

−1

Pm(x)Pn(x) dx = 0 if m 6= n. (6.167)
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Remarks.

• With the conventional normalization, P`(1) = 1, the Legendre polynomials are orthogonal,
but not orthonormal.

• As a check on (6.167) we note that if m is odd and n is even, then PmPn is an odd polynomial,
and hence a symmetric integral like (6.167) must be zero. As a further check we note from
(6.41) that ∫ 1

−1

P0(x)P2(x) dx = 1
2

∫ 1

−1

(3x2 − 1) dx = 1
2

[
x3 − x

]1
−1

= 0 . (6.168)

6.6.8 Eigenfunction Expansions of Green’s Functions for Self-Adjoint Operators

Let {λn} and {yn} be the eigenvalues and the complete orthonormal set of eigenfunctions of a self-adjoint
operator L̃ acting on functions satisfying (6.123b). Provided none of the λn vanish, we claim that the
Green’s function for L̃ can be written as

G(x, ζ) =
∞∑

n=1

w(ζ)y∗n(ζ)yn(x)
λn

, (6.169)

whereG(x, ζ) satisfies the same boundary conditions as the yn(x). This result follows from the observation
that

L̃G(x, ζ) =
∞∑

n=1

w(ζ) y∗n(ζ)
λn

L̃yn(x) from (6.169)

=
∞∑

n=1

w(ζ)y∗n(ζ) yn(x) from (6.134)

= δ(x− ζ) from (6.159a). (6.170)

Remark. The form of the Green’s function (6.169) shows that

w(x)G(x, ζ) = w(ζ)G∗(ζ, x) . (6.171)

Resonance. If λn = 0 for some n then G(x, ζ) does not exist. This is consistent with our previous
observation that L̃y = f has no solution for general f if L̃y = 0 has a solution satisfying appropriate
boundary conditions; yn(x) is precisely such a solution if λn = 0. The vanishing of one of the
eigenvalues is related to the phenomenon of resonance. If a solution to the problem (including the
boundary conditions) exists in the absence of the ‘forcing’ function f (i.e. there is a zero eigenvalue
of L̃) then any non-zero force elicits an infinite response.

6.6.9 Approximation via Eigenfunction Expansions

It is often useful, e.g. in a numerical method, to approximate a function with Sturm-Liouville boundary
conditions by a finite linear combination of Sturm-Liouville eigenfunctions, i.e.

f(x) ≈
N∑

n=1

anyn(x) . (6.172)

Define the error of the approximation to be

ΣN (a1, a2, . . . , aN ) =
∥∥∥∥ f(x)−

N∑
n=1

anyn(x)
∥∥∥∥2

. (6.173)

Natural Sciences Tripos: IB Mathematical Methods I 113 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2004



One definition of the ‘best’ approximation is that the error (6.173) should be minimized with respect
to the coefficients a1, a2, . . . , aN . By expanding (6.173) we have that, assuming that the yn are an
orthonormal set,

ΣN =
〈
f(x)−

N∑
n=1

anyn(x)
∣∣∣∣ f(x)−

N∑
m=1

amym(x)
〉

= 〈 f | f 〉 −
N∑

n=1

a∗n〈 yn | f 〉 −
N∑

m=1

am〈 f | ym 〉+
N∑

n=1

N∑
m=1

a∗nam〈 yn | ym 〉

= ‖f‖2 −
N∑

n=1

(
a∗n〈 yn | f 〉+ an〈 yn | f 〉∗

)
+

N∑
n=1

ana
∗
n . (6.174)

Hence if we perturb the an to an + δan we have that

δΣN = −
N∑

n=1

(
δa∗n
(
〈 yn | f 〉 − an

)
+ δan

(
〈 yn | f 〉∗ − a∗n

))
. (6.175)

By setting δΣN = 0 we see that ΣN is minimized when

an = 〈 yn | f 〉, or equivalently a∗n = 〈 yn | f 〉∗ . (6.176)

We note that this is an identical value for an to (6.157b). The value of ΣN is then, from (6.174),

ΣN = ‖f‖2 −
N∑

n=1

|an|2 . (6.177)

Since ΣN > 0 from (6.173), we arrive at Bessel’s inequality

‖f‖2 >
N∑

n=1

|an|2 . (6.178)

It is possible to show, but not here, that this inequality becomes an equality when N →∞, and hence

‖f‖2 =
∞∑

n=1

|an|2 (6.179)

which is a generalization of Parseval’s theorem.

Remark. While it is not strictly true that any function satisfying the Sturm-Liouville boundary condi-
tions can be expressed as an eigenfunction expansion (6.157a) (since there are restrictions such as
continuity), it is true that Σ∞ = 0 for such functions, i.e.∥∥∥∥ f(x)−

∞∑
n=1

〈 yn | f 〉 yn(x)
∥∥∥∥2

= 0 . (6.180)
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