
PHY 241 Planetary Systems - Coursework #8

Due: Tuesday, December 7, 2010 4pm

References:

• Ch. 21 An Introduction to Modern Astrophysics 2nd Edition Astronomy, by Carroll and
Ostlie (several copies in the Library)

• Ch. 13 Planetary Sciences, DePater & Lissauer (copy in the library -scan on the course
website). for exoplanets

Useful quantities:

• Solar luminosity L� = 3.8× 1026 J/s, Solar Mass M� = 1.98× 1030 kg

• 1AU = 1.495× 1011 m

• Stefan-Boltzmann constant σ = 5.67× 10−8 W m−2 K−4

• The atomic mass unit mu = 1.6605× 10−27 kg

• The Boltzmann constant kB = 1.3807× 10−23 J K−1

• M⊕ = 5.98× 1024 kg, R⊕ = 6.378× 106 m

• Specific heat of rock c = 800 J/kg/K, Melting temperature of rock Tmelt = 1000K, ρrock ≈
3000 kg/m3.

• Specific heat of ice c = 1000 J/kg/K, Melting temperature of ice Tmelt = 273K

• Mass of Jupiter MJ = 1.8986× 1027, Density of Jupiter ρJ = 1326kg/m3

• Specific heat of rock c = 800 J/kg/K, Melting temperature of rock Tmelt = 1000K, ρrock ≈
3000 kg/m3.

• Specific heat of ice c = 1000 J/kg/K, Melting temperature of ice at STP Tmelt = 273K

1. Strength Part II: Internal pressure and shape
The ‘strength’ of a material can be taken to mean the pressure a material can be subjected
to before it begins to deform, flow or fracture. For geologic materials, material strength is
generally measured in the lab. For example, lab results suggest that typical stony meteorites
have a strength in the range of S = 6× 107 to 4× 108 N m−2. For water ice the compressive
strength is roughly S = 6× 106 N m−2.

Here we’ll calculate the internal pressure profile of spherical planet of uniform density ρ and
examine for what size planet and at what depth the pressure is sufficiently large to overcome
strength and the planet will flow to a spherical shape.

a) Write down an expression for the gravitational acceleration g(r) inside a planet. where
r is the radial distance from the center of the planet.

b) Using this answer and the hydrostatic assumption, derive a general expression for the
pressure P (r) inside the planet.

c) Using the boundary condition that P = 0 at the surface (r = R), write down an
expression for the pressure at the center of the planet in terms of ρ, G, and R.
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d) The ‘spherical’ definition of a planet.
If the strength of rock is greater than the central pressure in a body, then nowhere
inside does rock flow geologically. In this case the rock strength can maintain a highly
irregular body shape. If nearly all of the body’s interior is under pressure much greater
than rock strength, then nearly the whole interior will flow geologically and the body
will take on a largely spherical shape. Thus, the irregular surface shapes (e.g. mountains,
gullies, craters,. . . etc.) are supported by rock strength and their size is limited by the
size of the region where the internal pressure is less than the rock strength. If we set
S = P (r = 0.20R) (a somewhat arbitrary threshold) we can identify the maximum
size of a body that will support a grossly irregular shape. Using this threshold, a rock
strength of S = 2 × 108 N m−2, and the expression for P (r), determine the maximum
radius Rmax of a rocky body that will support an irregular shape.

e) Alternatively, we can also examine the thickness of the body’s outer shell where material
strength can support irregular shapes (e.g. mountains). Using your expression for P (r)
write a relation for the radial distance rS , below which the internal pressure is greater
than the material strength ((P (r < rS) > S)).

f) The region where r > rS is dominated by rock strength and can support irregular shapes.
How does the thickness of the strength dominated region (thickness = R− rS) on Earth
compare with the height of the largest mountain on Earth (Mauna Kea 10200m)?

g) What is the thickness of the strength dominated region on Mars? How does this compare
with the height of Mars tallest mountain, Olympus Mons (23000m)?

2. Haumea’s internal strength and structure
Haumea is one of the recently discovered dwarf planets in the Kuiper Belt. Its spectra suggests
a surface of fairly clean water ice. It rotates rapidly and has an unusual light curve that may
result from a non-spherical shape or spotted surface. Haumea has satellites which permit the
determination of its mass (M = 4.00× 1021 kg). Measurements of the reflected solar flux and
re-radiated thermal flux in turn allow for the determination of Haumea’s albedo, physical size
and density. For the sake of this exercise consider Haumea as a sphere of uniform density
ρ = 2600 kg/m3

a) Compute the radius of Haumea and compare it with that of Pluto.

b) Considering that the strength of material making up Haumea is rock, how large should
we expect the surface irregularities to be (i.e. how deep is the region where P (r) < S)?
How do the size of these potential irregularities compare with the radius of Haumea?
Note for this exercise you may simply reuse the expression derived in previous problems.

c) If Haumea’s strength is that of rock, how large might the surface irregularities be (i.e. how
thick is the ‘strength dominated’ region near Haumea’s surface)?

d) If ice has a density of ρice = 1000 kg/m3 and rock as a density of rhorock = 3000 kg/m3,
what is the fraction of Haumea’s mass that is due to rock?

3. Planetary Binding Energy

a) Show that the total energy released when building a body with mass M, radius R, and
bulk density (ρ) by impacting planetesimals is at least:

Eb = −3GM2

5R
= −3GR5

5
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It may be convenient to use the definition of density for a sphere and work with ρ and
r.
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b) Assuming all this energy goes into heat, write an expression for the temperature rise of
the planet. Express your answer in terms of density and radius. Solve this to obtain
an expression for the minimum size a body must grow to in order to reach the melting
temperature Tmelt by this process?

c) For bodies made of rock compare this with the radius with the size of the inner plan-
ets and asteroids (e.g. how does this size compare with Earth, Mars, Ceres . . . etc.)
and comment on their plausible melting due to release of gravitational energy during
formation.

d) Repeat the above calculation for icy bodies and compare this radius to the sizes of the
solar system’s icy satellites (e.g. Ganymede, Callisto, Enceladus, Mimas, Ariel,...etc)
and to the largest Kuiper Belt Objects (e.g. Pluto, Haumea,...etc). (The Astronomy
Workshop ’Planet/Satellite Caluculators’ may be useful for comparing your answer to
the size of bodies). Which may have undergone global melting via release of gravitational
energy?

e) Data returned by the Galileo mission to Jupiter (1995-2003) suggests that Callisto is
not entirely differentiated, and therefore has never been entirely molten. Given your
calculations above, discuss how Callisto might have avoided global melting during its
assembly.
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