PHY 241 Planetary Systems - Coursework #5

Due: Thursday, November 4, 2010 4pm

Some physical data that might be useful:

Object	Mass (kg)	Radius (km)	Rotation Period	Semi-major axis
Sun	1.98×10^{30}	$6.96 imes 10^5$	$\sim 25 \text{ days}$	
Earth	$5.97 imes 10^{24}$	6,378	23.93 h	$1.00 \mathrm{AU}$
Moon	7.35×10^{22}	1,737	synchronous	$384{,}400~\rm{km}$
Jupiter	1.90×10^{27}	71,398	9.92 h	$5.203 \mathrm{AU}$
Saturn	$5.68 imes 10^{26}$	60,330	$10.66 \ h$	$9.537 \ \mathrm{AU}$
Mimas	3.85×10^{19}	199	synchronous	$185{,}520~\mathrm{km}$

1. The magnitude of the orbital angular momentum of a satellite of mass M_p orbiting a planet of mass M_p with semi-major axis a and eccentricity e is (coursework #2):

$$L = m (GM_p a)^{1/2} (1 - e^2)^{1/2} \qquad \text{(for} \quad m_s \ll M_p) \tag{1}$$

Using the definition of a torque (Γ) ,

$$\Gamma = \frac{d\mathbf{L}}{dt} \tag{2}$$

and assuming the masses are constant and the orbit circular, derive a relation between the magnitude of the torque applied to a satellite and the rate of change of its semi-major axis (da/dt). [1 mark]

2. The torque on a satellite from the tidal bulge which it raises on its primary is given by

$$\Gamma = \frac{dL}{dt} = \frac{3}{2} \left(\frac{k_{2p}}{Q_p} \right) \frac{Gm_s^2 R_p^5}{r^6} \operatorname{sign}(\Omega_p - \omega_s)$$
(3)

where R_p and Ω_p are the radius and rotational angular velocity of the primary and m_s is the mass of the satellite, ω_s is its orbital angular velocity and r is the distance between the primary and the satellite. [3 marks]

a) How does the following term

$$\operatorname{sign}(\Omega_p - \omega_s)$$

in Eq. (3) affect the sign and magnitude of the tidal torque?

- b) Equating the tidal torque on the satellite (Eq. 3) with the expression you derived relating dL/dt and da/dt above, and considering a circular orbit (r = a), find an expression for the semi-major axis of the satellite as a function of time and its initial semi-major axis a_o at some initial time t_0 .
- 3. Mimas is the regular satellite of Saturn that orbits closest to, but above Saturn's corotation orbit [see e.g. coursework #1] [5 marks]
 - a) Draw a diagram of a top down view of the Saturn-Mimas system which shows the following:
 - i. Saturn's rotation.
 - ii. Mimas' circular orbit about Saturn.
 - iii. Saturn's corotation orbit (i.e. the orbit synchronous with Saturn's rotation).
 - iv. The Roche radius for a body with Mimas' density.

- v. The tidal bulges that Mimas raises in Saturn.
- b) In a few sentences and using the diagram you've constructed above, explain how the net force from the bulges that Mimas raises in Saturn exerts a torque on Mimas, causing its orbit to expand.
- c) What is the closest distance to Saturn that Mimas could have formed, such that it has always tidally evolved outward? [you may assume Saturn's current rotation rate is constant.]
- d) Saturn and Mimas probably formed about 4.5×10^9 years ago. Use the expression for the semi-major axis as a function of time and Mimas' smallest (computed above) and current orbits to estimate a value of the ratio (k_{2p}/Q_p) for Saturn.
- 4. The age of the solar system is about 4.5×10^9 years. Saturn and its system of regular satellites were probably completely formed within the first $10^6 - 10^7$ years of solar system history. The mass of Saturn's ring system has a lower limit of about the mass of Mimas. Here we use a few calculations to evaluate how a primordial satellite close to Saturn might evolve through the Roche zone. [3 marks]
 - a) Using the value of (k_{2p}/Q_p) for Saturn you've estimated above, compute the time it would take a satellite with a mass equal to that of Mimas, to evolve inward from the synchronous orbit to Saturn's surface? List your answer in seconds and years.
 - i. How much of the solar system's history could such a satellite persist?
 - ii. If this satellite were 4x more massive, by what factor would the time required to reach Saturn's surface change?
 - b) How would tidal forces affect this satellite during its orbital decay to Saturn's surface? What are the possible fates of the satellite?
 - c) What do your answers to the above questions imply for constraining when Saturn's ring system may have formed via this process?