
PHY241 Planetary Systems - Coursework #3

Due: Tuesday, October 19, 2010 4pm

Some physical data that might be useful:

Object Mass (kg) Radius (km) Rotation Period Semi-major axis
Sun 1.98× 1030 6.96× 105 ∼ 25 days
Mercury 3.30× 1023 2440 1047.51 h 0.3871 AU
Earth 5.97× 1024 6,378 23.93 h 1.00 AU
Moon 7.35× 1022 1,737 synchronous 384,400 km
Mars 6.41× 1023 3,394 24.64 h 1.523 AU
Phobos 1.08× 1016 11.2 synchronous 9380 km
Jupiter 1.90× 1027 71,398 9.92 h 5.203 AU
Saturn 5.68× 1026 60,330 10.66 h 9.537 AU
Mimas 3.85× 1019 199 synchronous 185,520 km

Additional values needed can be found on the web (wikipedia is a good source).

1. Planning spacecraft missions - Part I [10 marks]
The Mercury Messenger spacecraft in en route to Mercury and will begin orbiting the planet
later this year. This problem examines some issues related to getting to Mercury. For simplic-
ity consider that both Earth and Mercury on circular orbits. After launch the spacecraft is on
a circular orbit with a semi-major axis equal to the Earth’s and is no longer ’near’ the Earth
in its orbit (i.e. you may now ignore gravitational interaction with Earth). It will need to ‘do
a burn’ to change it’s speed to reach Mercury’s orbit. Treat the burn as an instantaneous
change in speed or ∆v.

a) The new, ‘post burn’ transfer orbit must take the spacecraft from Earth’s orbit to Mer-
cury’s (i.e. it must cross both). Make a diagram showing Earth’s and Mercury’s orbit
and identify the pericentre and apocentre of the transfer orbit (consider the orbit that
requires a minimum of energy change - as discussed in class).

b) Compute the semi-major axis and eccentricity of the transfer orbit.

c) Compute the speed of the spacecraft just after the burn.

d) Compute the Earth’s circular orbital velocity and the ∆v needed to go from the Earth
orbit to the transfer orbit.

e) What is the spacecraft’s velocity as it reaches Mercury’s orbit?

f) At what relative velocity does the spacecraft approach Mercury’s orbit? (i.e. at what
velocity does the spacecraft approach Mercury - ignore Mercury’s gravity for the time
being).

2. Collinear Lagrange Points [9 marks]
In class we derived the distance to the L1 Lagrangian Point and found it to be a distance
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interior to the planet along the Sun-planet line, where the ‘s’ subscript refers to the secondary
and the ‘p’ subscript refers to the primary.

a) Derive an approximate expression for the distance from the planet to the exterior L2
Lagrangian equilibrium point.
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b) To the level of this approximation how does the distance from the planet to the L2
compare with the distance from the planet to the L1 point?

3. Tidal length scales - the size of things [10 marks]

a) Describe briefly what the Hill sphere tells you.

b) Using the mass of the Milky Way galaxy (5.8 × 1011M�, and the distance of the Sun
from the galactic center (26, 000 light years), compute the size of the Sun’s Hill sphere
with respect to the galactic center. Express your answer in AU.

c) Alpha Centauri is the nearest star system to the Sun. See the wikipedia site for a
description. http://en.wikipedia.org/wiki/Alpha Centauri.
If the total mass of the stars is about 2-M� and they are 4.37 light years away from the
Sun, what is the Hill sphere of the Sun with respect to Alpha Centauri?

d) Which mass is more important for determining the effective ’Hill sphere’ of the Solar
System (the galaxy or Alpha Centauri)?

e) How do these estimates for the solar system’s Hill sphere compare with the size of the
solar system’s exterior ‘Oort’ comet cloud? (you can find the mass of the galaxy and
gross characteristics of the Oort cloud on Wikipedia).

4. Hill sphere and Roche Radius [8 marks]

a) Compute the Hill sphere of Mars’ satellite Phobos with respect to Mars and express this
Hill sphere in Phobos radii.

b) Compute the Roche radius for bodies orbiting Mars with density ρ = 1900 kg/m3.
Express the answer in metres and Martian radii.

c) Compute the Hill sphere of an icy body (ρ = 1000 kg/m3) of 10 metres in radius, orbiting
Saturn at 1.2 Saturnian radii.

d) Imagine Jupiter spiralling in towards the Sun. At what distance from the Sun would
Jupiter’s surface, just touch it’s Hill sphere? What is the orbital period here?

5. Stability and Dynamics Near Lagrange Points
In class we’ve discussed the locations of the collinear Lagrange points and briefly mentioned
the Trojan or equilateral Lagrange Equilibrium points in passing.1

Here you will use the ‘Lagrange Point Explorer’ numerical integrator from the ‘Astronomy
Workshop’2 to explore the stability and character of orbits near the Lagrange points of Jupiter.

Note: the integrator uses a rotating frame where the x-axis is along the line joining the planet
to the star (with the + direction to the right, towards 3-O’clock), the y-axis is perpendicular
to this and in the orbital plane (with the + direction up, towards 12-O’clock), and the +z-axis
is out of the page.

a) Compute the Hill radius of Jupiter and express your answer both as a fraction of Jupiter’s
semi major axis (i.e. rH/aJ) and in AU. This provides a length scale for the problem.
We will use following parameters for the Sun-Jupiter system to examine qualitatively
the dynamics near the equilibrium points.

1See Solar System Dynamics, chapter 3 by QMUL’s Prof. Carl Murray for a complete derivation of the location and
stability of the Lagrange points. You might also take the MSc/MSci module ASTM001 Solar System for a more
complete treatment in a later year of your programme.

2These integrators can be found at http://janus.astro.umd.edu/AW/awtools.html#integrators
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Mass of Central Body 1.000 Planet Mass (in central units) 0.000954
Planet semi major axis 5.210 Planet eccentricity 0.000
x (AU) 0.000 vx (km/s) 0.000
y (AU) 0.000 vy (km/s) 0.000
z (AU) 0.000 vz (km/s) 0.000

These will place the test mass at the location of the equilibrium point (chosen from
the drop down menu). We will explore the behavior near these equilibrium points by
considering initial conditions that start with small deviations from the equilibrium points
in either r or v.
Also choose model parameters of ’1e-14 Most Accurate’, integration time of ’50’ orbital
periods with an output interval of ’6’ days. These values are all pretty close to the
default values.
When plotting, use an ’x-y’ plot in the ’rotating’ frame.

b) Write a few sentences to answer the questions below. Save and turn in a few of the
orbits you produced to justify your answers.

i. Characterizing the L1 - Try simulations with particles starting at the L1 point.
Vary the initial position along the x-axis and examine how this affects the orbit?
How does varying x in the range [-.02 and +0.02] AU affect the region traversed by
the particle?
Does the particle stay ‘near’ the L1 throughout the calculation and oscillate about
this location (i.e. is this a stable equilibrium point)?

ii. Characterizing the L4 - Perform simulations with particles starting at the L4 or
L5 points. Vary the initial velocity and examine how this affects the orbit.
Does the L4 appear to be a stable equilibrium point? For example, try an initial
condition very close to the equilibrium point, (e.g. vx = 0.001km/s with all other
values equal to zero). Does the particle stay ‘near’ and oscillate about the L4
throughout the calculation for a very small deviations from it?
How does increasing vx in the range [0.1,0.2,0.3,0.4] km/s affect the character of the
orbit? What happens when vx is much larger (e.g. 2km/s)?

A few other topics you could explore . . . [but do not have to turn in].

• What are the stability properties and orbital character near the L2, L5 points. How do
these compare with the L1 and L4?

• How does the planet’s eccentricity (which we’ve taken as zero up to this point) affect
the orbits near the Lagrange points?

• How does the planet’s mass affect the velocity needed to escape the L4 or L5 equilibrium
points? Are Mars’ L4 and L5 points more dynamically fragile than Jupiter’s?

Food for thought: A good MSci/BSc project would be to address the a few of the following
(unanswered) questions. Why do some planets and satellites have Trojan companions at the
L4 and L5 (e.g. Jupiter, Neptune, Mars, Tethys, Dione, Janus and Epimetheus) while others
do not? Should extrasolar planets have Lagrangian companions? How does the presence or
absence of these Lagrangian companions and their properties inform our understanding of
origin and evolution of the solar system? A project of this sort would involve a bit of theory
and some modelling like that in this coursework.
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